Do you want to publish a course? Click here

Status of the VERITAS Stellar Intensity Interferometry (VSII) System

70   0   0.0 ( 0 )
 Added by D. B. Kieda
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The VERITAS Imaging Air Cherenkov Telescope array (IACT) was augmented in 2019 with high-speed focal plane electronics to allow the use of VERITAS for Stellar Intensity Interferometry (SII) observations. Since that time, several improvements have been implemented to increase the sensitivity of the VERITAS Stellar Intensity Interferometer (VSII) and increase the speed of nightly data processing. This poster will describe the use of IACT arrays for performing ultra-high resolution (sub-milliarcsecond) astronomical observations at short visible wavelengths. The poster presentation will include a description of the VERITAS-SII focal plane, data acquisition, and data analysis systems. The poster concludes with a description of plans for future upgrades of the VSII instrument.



rate research

Read More

The VERITAS Imaging Air Cherenkov Telescope (IACT) array was augmented in 2019 with high-speed focal plane electronics to allow its use for Stellar Intensity Interferometry (SII) observations. Since January 2019, the VERITAS Stellar Interferometer (VSII) recorded more than 250 hours of moonlit observations on 39 different bright stars and binary systems ($m_V < 3.74$) at an effective optical wavelength of 416 nm. These observations resulted in the measurement of the diameters of several stars with better than 5% resolution. This talk will describe the status of the VSII survey and analysis.
High angular resolution observations at optical wavelengths provide valuable insights in stellar astrophysics, directly measuring fundamental stellar parameters, and probing stellar atmospheres, circumstellar disks, elongation of rapidly rotating stars, and pulsations of Cepheid variable stars. The angular size of most stars are of order one milli-arcsecond or less, and to spatially resolve stellar disks and features at this scale requires an optical interferometer using an array of telescopes with baselines on the order of hundreds of meters. We report on the successful implementation of a stellar intensity interferometry system developed for the four VERITAS imaging atmospheric-Cherenkov telescopes. The system was used to measure the angular diameter of the two sub-mas stars $beta$ Canis Majoris and $epsilon$ Orionis with a precision better than 5%. The system utilizes an off-line approach where starlight intensity fluctuations recorded at each telescope are correlated post-observation. The technique can be readily scaled onto tens to hundreds of telescopes, providing a capability that has proven technically challenging to current generation optical amplitude interferometry observatories. This work demonstrates the feasibility of performing astrophysical measurements with imaging atmospheric-Cherenkov telescope arrays as intensity interferometers and the promise for integrating an intensity interferometry system within future observatories such as the Cherenkov Telescope Array.
Stellar Intensity Interferometry is a technique based on the measurement of the second order spatial correlation of the light emitted from a star. The physical information provided by these measurements is the angular size and structure of the emitting source. A worldwide effort is presently under way to implement stellar intensity interferometry on telescopes separated by long baselines and on future arrays of Cherenkov telescopes. We describe an experiment of this type, realized at the Asiago Observatory (Italy), in which we performed for the first time measurements of the correlation counting photon coincidences in post-processing by means of a single photon software correlator and exploiting entirely the quantum properties of the light emitted from a star. We successfully detected the temporal correlation of Vega at zero baseline and performed a measurement of the correlation on a projected baseline of $sim$2 km. The average discrete degree of coherence at zero baseline for Vega is $< g^{(2)} > , = 1.0034 pm 0.0008$, providing a detection with a signal-to-noise ratio $S/N gtrsim 4$. No correlation is detected over the km baseline. The measurements are consistent with the expected degree of spatial coherence for a source with the 3.3 mas angular diameter of Vega. The experience gained with the Asiago experiment will serve for future implementations of stellar intensity interferometry on long-baseline arrays of Cherenkov telescopes.
157 - D. B. Kieda 2011
The VERITAS gamma ray observatory (Amado, AZ, veritas.sao.arizona.edu) uses the Imaging Atmospheric Cherenkov Technique (IACT) to study sources of Very High Energy (VHE: E > 100 GeV) gamma rays. Key science results from the first three years of observation include the discovery of the first VHE emitting starburst galaxy, detection of new Active Galactic Nuclei (AGN), SuperNova Remnants (SNR), gamma ray binaries as well as strong limits on the emission of VHE gamma rays from dark matter annihilation in dwarf galaxies. In April 2010, VERITAS received funding to upgrade the photomultiplier tube cameras, pattern triggers, and networking systems in order to improve detector sensitivity, especially near detection threshold (E ~ 100 GeV). In this paper we describe the status of the VERITAS upgrade and the expected improvements in sensitivity when it is completed in summer 2012.
Imaging Atmospheric Cherenkov Telescopes (IACTs) currently in operation feature large mirrors and order of 1 ns time response to signals of a few photo-electrons produced by optical photons. This means that they are ideally suited for optical interferometry observations. Thanks to their sensitivity to visible wavelengths and long baselines optical intensity interferometry with IACTs allows reaching angular resolutions of tens to microarcsec. We have installed a simple optical setup on top of the cameras of the two 17 m diameter MAGIC IACTs and observed coherent fluctuations in the photon intensity measured at the two telescopes for three different stars. The sensitivity is roughly 10 times better than that achieved in the 1970s with the Narrabri interferometer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا