Do you want to publish a course? Click here

Co-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam

142   0   0.0 ( 0 )
 Added by Denis Defr\\`ere
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 um). PHASECam is LBTIs near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).



rate research

Read More

PHASECam is the fringe tracker for the Large Binocular Telescope Interferometer (LBTI). It is a near-infrared camera which is used to measure both tip/tilt and fringe phase variations between the two adaptive optics (AO) corrected apertures of the Large Binocular Telescope (LBT). Tip/tilt and phase sensing are currently performed in the $H$ (1.65 $mu$m) and $K$ (2.2 $mu$m) bands at 1 kHz, but only the $K$-band phase telemetry is used to send corrections to the system in order to maintain fringe coherence and visibility. However, due to the cyclic nature of the fringe phase, only the phase, modulo 360 deg, can be measured. PHASECams phase unwrapping algorithm, which attempts to mitigate this issue, occasionally fails in the case of fast, large phase variations or low signal-to-noise ratio. This can cause a fringe jump, in which case the OPD correction will be incorrect by a wavelength. This can currently be manually corrected by the operator. However, as the LBTI commissions further modes which require robust, active phase control and for which fringe jumps are harder to detect, including multi-axial (Fizeau) interferometry and dual-aperture non-redundant aperture masking interferometry, a more reliable and automated solution is desired. We present a multi-wavelength method of fringe jump capture and correction which involves direct comparison between the $K$-band and $H$-band phase telemetry. We demonstrate the method utilizing archival PHASECam telemetry, showing it provides a robust, reliable way of detecting fringe jumps which can potentially recover a significant fraction of the data lost to them.
The Large Binocular Telescope Interferometer is a high contrast imager and interferometer that sits at the combined bent Gregorian focus of the LBTs dual 8.4~m apertures. The interferometric science drivers dictate 0.1 resolution with $10^3-10^4$ contrast at $10~mu m$, while the $4~mu m$ imaging science drivers require even greater contrasts, but at scales $>$0.2. In imaging mode, LBTIs Adaptive Optics system is already delivering $4~mu m$ contrast of $10^4-10^5$ at $0.3-0.75$ in good conditions. Even in poor seeing, it can deliver up to 90% Strehl Ratio at this wavelength. However, the performance could be further improved by mitigating Non-Common Path Aberrations. Any NCPA remedy must be feasible using only the current hardware: the science camera, the wavefront sensor, and the adaptive secondary mirror. In preliminary testing, we have implemented an ``eye doctor grid search approach for astigmatism and trefoil, achieving 5% improvement in Strehl Ratio at $4~mu m$, with future plans to test at shorter wavelengths and with more modes. We find evidence of NCPA variability on short timescales and discuss possible upgrades to ameliorate time-variable effects
589 - E. Giallongo 2008
We present the characteristics and some early scientific results of the first instrument at the Large Binocular Telescope (LBT), the Large Binocular Camera (LBC). Each LBT telescope unit will be equipped with similar prime focus cameras. The blue channel is optimized for imaging in the UV-B bands and the red channel for imaging in the VRIz bands. The corrected field-of-view of each camera is approximately 30 arcminutes in diameter, and the chip area is equivalent to a 23x23 arcmin2 field. In this paper we also present the commissioning results of the blue channel. The scientific and technical performance of the blue channel was assessed by measurement of the astrometric distortion, flat fielding, ghosts, and photometric calibrations. These measurements were then used as input to a data reduction pipeline applied to science commissioning data. The measurements completed during commissioning show that the technical performance of the blue channel is in agreement with original expectations. Since the red camera is very similar to the blue one we expect similar performance from the commissioning that will be performed in the following months in binocular configuration. Using deep UV image, acquired during the commissioning of the blue camera, we derived faint UV galaxy-counts in a ~500 sq. arcmin. sky area to U(Vega)=26.5. These galaxy counts imply that the blue camera is the most powerful UV imager presently available and in the near future in terms of depth and extent of the field-of-view. We emphasize the potential of the blue camera to increase the robustness of the UGR multicolour selection of Lyman break galaxies at redshift z~3.
The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high-angular resolution and high-contrast infrared imaging (1.5-13 microns). In this paper, we focus on the mid-infrared (8-13 microns) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in March 2015. With an interferometric baseline of 14.4 meters, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exoEarth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in February 2015 a calibrated null accuracy of 0.05% over a three-hour long observing sequence on the bright nearby A3V star beta Leo. This is equivalent to an exozodiacal disk density of 15 to 30 zodi for a Sun-like star located at 10pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.
The Large Binocular Telescope Interferometer (LBTI) can perform Fizeau interferometry in the focal plane, which accesses spatial information out to the LBTs full 22.7-m edge-to-edge baseline. This mode has previously been used to obtain science data, but has been limited to observations where the optical path difference (OPD) between the two beams is not controlled, resulting in unstable fringes on the science detectors. To maximize the science return, we are endeavoring to stabilize the OPD and tip-tilt variations and make the LBTI Fizeau mode optimized and routine. Here we outline the optical configuration of LBTIs Fizeau mode and our strategy for commissioning this observing mode.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا