No Arabic abstract
We study the LHC sensitivity to probe a long-lived heavy neutrino $N$ in the context of $Z$ models. We focus on displaced vertex signatures of $N$ when pair produced via a $Z$, decaying to leptons and jets inside the inner trackers of the LHC experiments. We explore the LHC reach with current long-lived particle search strategies for either one or two displaced vertices in association with hadronic tracks or jets. We focus on two well-motivated models, namely, the minimal $U(1)_{B-L}$ scenario and its $U(1)_{X}$ extension. We find that searches for at least one displaced vertex can cover a significant portion of the parameter space, with light-heavy neutrino mixings as low as $|V_{lN}|^2approx 10^{-17}$, and $l=e,mu$ accessible across GeV scale heavy neutrino masses.
We review the prospects for B decay studies at the LHC.
We discuss lepton flavour violating processes induced in the production and decay of heavy right-handed neutrinos at the LHC. Such particles appear in left-right symmetrical extensions of the Standard Model as the messengers of neutrino mass generation, and can have masses at the TeV scale. We determine the expected sensitivity on the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for low energy LFV processes, we identify favourable areas of the parameter space to explore the complementarity between LFV at low and high energies.
Unparticles ($U$) interact weakly with particles. The direct signature of unparticles will be in the form of missing energy. We study constraints on unparticle interactions using totally invisible decay modes of $Z$, vector quarkonia $V$ and neutrinos. The constraints on the unparticle interaction scale $Lambda_U$ are very sensitive to the dimension $d_U$ of the unparticles. From invisible $Z$ and $V$ decays, we find that with $d_U$ close to 1 for vector $U$, the unparticle scale $Lambda_U$ can be more than $10^4$ TeV, and for $d_U$ around 2, the scale can be lower than one TeV. From invisible neutrino decays, we find that if $d_U$ is close to 3/2, the scale can be more than the Planck mass, but with $d_U$ around 2 the scale can be as low as a few hundred GeV. We also study the possibility of using $V (Z)to gamma + U$ to constrain unparticle interactions, and find that present data give weak constraints.
The QCD axion is a well-motivated addition to the standard model to solve the strong $CP$ problem. If the axion acquires mass dominantly from a hidden sector, it can be as heavy as $O(1)$ GeV, and the decay constant can be as low as $O(100)$ GeV without running into the axion quality problem. We propose new search strategies for such heavy QCD axions at the Belle II experiment, where the axions are expected to be produced via $Bto K a$. We find that a subsequent decay $ato 3pi$ with a displaced vertex leads to a unique signal with essentially no background, and that a dedicated search can explore the range $O(1-$$10)$ TeV of decay-constant values. We also show that $ato gammagamma$ can cover a significant portion of currently unexplored region of $150 lesssim m_a lesssim 500$ MeV.
We investigate the search for heavy Majorana neutrinos stemming from a composite model scenario at the upcoming LHC Run II at a center of mass energy of 13 TeV. While previous studies of the composite Majorana neutrino were focussed on gauge interactions via magnetic type transition coupling between ordinary and heavy fermions (with mass $m^*$) here we complement the composite model with contact interactions at the energy scale $Lambda$ and we find that the production cross sections are dominated by such contact interactions by roughly two/three orders of magnitude. This mechanism provides therefore very interesting rates at the prospected luminosities. We study the same sign di-lepton and di-jet signature ($pp to ellell jj$) and perform a fast detector simulation based on Delphes. We compute 3$sigma$ and 5$sigma$ contour plots of the statistical significance in the parameter space ($Lambda,m^*$). We find that the potentially excluded regions at $sqrt{s} =13$ TeV are quite larger than those excluded so far at Run I considering searches with other signatures.