Do you want to publish a course? Click here

Heavy QCD Axion at Belle II: Displaced and Prompt Signals

58   0   0.0 ( 0 )
 Added by Vazha Loladze
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The QCD axion is a well-motivated addition to the standard model to solve the strong $CP$ problem. If the axion acquires mass dominantly from a hidden sector, it can be as heavy as $O(1)$ GeV, and the decay constant can be as low as $O(100)$ GeV without running into the axion quality problem. We propose new search strategies for such heavy QCD axions at the Belle II experiment, where the axions are expected to be produced via $Bto K a$. We find that a subsequent decay $ato 3pi$ with a displaced vertex leads to a unique signal with essentially no background, and that a dedicated search can explore the range $O(1-$$10)$ TeV of decay-constant values. We also show that $ato gammagamma$ can cover a significant portion of currently unexplored region of $150 lesssim m_a lesssim 500$ MeV.



rate research

Read More

Many dark matter models generically predict invisible and displaced signatures at Belle II, but even striking events may be missed by the currently implemented search programme because of inefficient trigger algorithms. Of particular interest are final states with a single photon accompanied by missing energy and a displaced pair of electrons, muons, or hadrons. We argue that a displaced vertex trigger will be essential to achieve optimal sensitivity at Belle II. To illustrate this point, we study a simple but well-motivated model of thermal inelastic dark matter in which this signature naturally occurs and show that otherwise inaccessible regions of parameter space can be tested with such a search. We also evaluate the sensitivity of single-photon searches at BaBar and Belle II to this model and provide detailed calculations of the relic density target.
We study charged lepton flavor violation associated with a light leptophilic axion-like particle (ALP), $X$, at the $B$-factory experiment Belle II. We focus on production of the ALP in the tau decays $tau to X l$ with $l=e,mu$, followed by its decay via $Xto l^- l^+$. The ALP can be either promptly decaying or long-lived. We perform Monte-Carlo simulations, recasting a prompt search at Belle for lepton-flavor-violating $tau$ decays, and propose a displaced-vertex (DV) search. For both types of searches, we derive the Belle~II sensitivity reaches in both the product of branching fractions and the ALP coupling constants, as functions of the ALP mass and lifetime. The results show that the DV search exceeds the sensitivity reach of the prompt search to the relevant branching fractions by up to about a factor of 40 in the long decay length regime.
We study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking (NMGMSB), both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV Standard Model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2$sigma$ excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a $b-$jet pair or a tau pair. We investigate current lower bounds on sparticle masses and the discovery potential of the model, both via conventional sparticle searches and via searches for displaced vertices. The strongest bound from searches for promptly decaying sparticles yields a lower limit on the gluino mass of 1080 GeV. An analysis of 100 fb$^{-1}$ from Run II, on the other hand, is expected to be sensitive up to 1900 GeV. The displaced vertex searches from Run I suffer from a very low signal efficiency, mainly due to the presence of $b-$quarks in the final state. We show how the displaced vertex cuts might be relaxed in order to improve signal efficiency, while simultaneous prompt objects can be used to cut down background. We find that a combined search strategy with both prompt and displaced cuts potentially has a far better sensitivity to this model than either set alone, motivating a fully fledged experimental study.
Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV to GeV mass region from colliders, beam dump experiments and astrophysics. We furthermore provide a detailed calculation of the expected sensitivity of Belle II, which can search for visibly and invisibly decaying ALPs, as well as long-lived ALPs. The Belle II sensitivity is found to be substantially better than previously estimated, covering wide ranges of relevant parameter space. In particular, Belle II can explore an interesting class of dark matter models, in which ALPs mediate the interactions between the Standard Model and dark matter. In these models, the relic abundance can be set via resonant freeze-out, leading to a highly predictive scenario consistent with all existing constraints but testable with single-photon searches at Belle II in the near future.
We study the LHC sensitivity to probe a long-lived heavy neutrino $N$ in the context of $Z$ models. We focus on displaced vertex signatures of $N$ when pair produced via a $Z$, decaying to leptons and jets inside the inner trackers of the LHC experiments. We explore the LHC reach with current long-lived particle search strategies for either one or two displaced vertices in association with hadronic tracks or jets. We focus on two well-motivated models, namely, the minimal $U(1)_{B-L}$ scenario and its $U(1)_{X}$ extension. We find that searches for at least one displaced vertex can cover a significant portion of the parameter space, with light-heavy neutrino mixings as low as $|V_{lN}|^2approx 10^{-17}$, and $l=e,mu$ accessible across GeV scale heavy neutrino masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا