Do you want to publish a course? Click here

Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC

244   0   0.0 ( 0 )
 Added by Frank Deppisch
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We discuss lepton flavour violating processes induced in the production and decay of heavy right-handed neutrinos at the LHC. Such particles appear in left-right symmetrical extensions of the Standard Model as the messengers of neutrino mass generation, and can have masses at the TeV scale. We determine the expected sensitivity on the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for low energy LFV processes, we identify favourable areas of the parameter space to explore the complementarity between LFV at low and high energies.



rate research

Read More

We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from the type I + type II seesaw mechanism. We studied the new physics contributions to NDBD coming from the left-right gauge boson mixing and the heavy neutrino contribution within the framework of LRSM. We have considered the mass of the RH gauge boson to be specifically 5 TeV, 10 TeV and 18 TeV and studied the effects of the new physics contributions on the effective mass and baryogenesis and compared with the current experimental limit. We tried to correlate the cosmological BAU from resonant leptogenesis with the low energy observables, notably, NDBD and LFV with a view to finding a common parameter space where they coexists.
We propose a simple left-right symmetric theory where the neutrino masses are generated at the quantum level. In this context the neutrinos are Majorana fermions and the model has the minimal degrees of freedom in the scalar sector needed for symmetry breaking and mass generation. We discuss the lepton number violating signatures with two charged leptons of different flavor and missing energy at the Large Hadron Collider in order to understand the testability of the theory.
We analyse in detail the scalar triplet contribution to the low-energy lepton flavour violating (LFV) and lepton number violating (LNV) processes within a TeV-scale left-right symmetric framework. We show that in both type-I and type-II seesaw dominance for the light neutrino masses, the triplet of mass comparable to or smaller than the largest right-handed neutrino mass scale can give sizeable contribution to the LFV processes, except in the quasi-degenerate limit of light neutrino masses, where a suppression can occur due to cancellations. In particular, a moderate value of the heaviest neutrino to scalar triplet mass ratio $rlesssim {cal O}(1)$ is still experimentally allowed and can be explored in the future LFV experiments. Similarly, the contribution of a relatively light triplet to the LNV process of neutrinoless double beta decay could be significant, disfavouring a part of the model parameter space otherwise allowed by LFV constraints. Nevertheless, we find regions of parameter space consistent with both LFV and LNV searches, for which the values of the total effective neutrino mass can be accessible to the next generation ton-scale experiments. Such light triplets can also be directly searched for at the LHC, thus providing a complementary probe of this scenario. Finally, we also study the implications of the triplet contribution for the left-right symmetric model interpretation of the recent diboson anomaly at the LHC.
We assess the sensitivity of the LHC, its high energy upgrade, and a prospective 100 TeV hadronic collider to the Dirac Yukawa coupling of the heavy neutrinos in left-right symmetric models (LRSMs). We focus specifically on the trilepton final state in regions of parameter space yielding prompt decays of the right-handed gauge bosons ($W_R$) and neutrinos ($N_R$). In the minimal LRSM, the Dirac Yukawa couplings are completely fixed in terms of the mass matrices for the heavy and light neutrinos. In this case, the trilepton signal provides a direct probe of the Dirac mass term for a fixed $W_R$ and $N_R$ mass. We find that while it is possible to discover the $W_R$ at the LHC, probing the Dirac Yukawa couplings will require a 100 TeV $pp$ collider. We also show that the observation of the trilepton signal at the LHC would indicate the presence of a non-minimal LRSM scenario.
We consider a class of models predicting new heavy neutral fermionic states, whose mixing with the light neutrinos can be naturally significant and produce observable effects below the threshold for their production. We update the indirect limits on the flavour non-diagonal mixing parameters that can be derived from unitarity, and show that significant rates are in general expected for one-loop-induced rare processes due to the exchange of virtual heavy neutrinos, involving the violation of the muon and electron lepton numbers. In particular, the amplitudes for $mu$--$e$ conversion in nuclei and for $muto ee^+e^-$ show a non-decoupling quadratic dependence on the heavy neutrino mass $M$, while $muto egamma$ is almost independent of the heavy scale above the electroweak scale. These three processes are then used to set stringent constraints on the flavour-violating mixing angles. In all the cases considered, we point out explicitly that the non-decoupling behaviour is strictly related to the spontaneous breaking of the SU(2) symmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا