Do you want to publish a course? Click here

The crystalline comparison of Ainf-cohomology: the case of good reduction

206   0   0.0 ( 0 )
 Added by Zijian Yao
 Publication date 2019
  fields
and research's language is English
 Authors Zijian Yao




Ask ChatGPT about the research

We provide a simple approach for the crystalline comparison of Ainf-cohomology, and reprove the comparison between crystalline and p-adic etale cohomology for formal schemes in the case of good reduction.



rate research

Read More

Let $C$ be a hyperelliptic curve of genus $g$ over the fraction field $K$ of a discrete valuation ring $R$. Assume that the residue field $k$ of $R$ is perfect and that $mathrm{char} k > 2g+1$. Let $S = mathrm{Spec} R$. Let $X$ be the minimal proper regular model of $C$ over $S$. Let $mathrm{Art} (C/K)$ denote the Artin conductor of the $S$-scheme $X$ and let $ u (Delta_C)$ denote the minimal discriminant of $C$. We prove that $-mathrm{Art} (C/K) leq u (Delta_C)$. The key ingredients are a combinatorial refinement of the discriminant introduced in this paper (called the metric tree) and a recent refinement of Abhyankars inversion formula for studying plane curve singularities. We also prove combinatorial restrictions for $-mathrm{Art} (C/K) = u (Delta_C)$.
We give an explicit conjectural formula for the motivic Euler characteristic of an arbitrary symplectic local system on the moduli space A_3 of principally polarized abelian threefolds. The main term of the formula is a conjectural motive of Siegel modular forms of a certain type; the remaining terms admit a surprisingly simple description in terms of the motivic Euler characteristics for lower genera. The conjecture is based on extensive counts of curves of genus three and abelian threefolds over finite fields. It provides a lot of new information about vector-valued Siegel modular forms of degree three, such as dimension formulas and traces of Hecke operators. We also use it to predict several lifts from genus 1 to genus 3, as well as lifts from G_2 and new congruences of Harder type.
We prove various finiteness and representability results for flat cohomology of finite flat abelian group schemes. In particular, we show that if $f:Xrightarrow mathrm{Spec} (k)$ is a projective scheme over a field $k$ and $G$ is a finite flat abelian group scheme over $X$ then $R^if_*G$ is an algebraic space for all $i$. More generally, we study the derived pushforwards $R^if_*G$ for $f:Xrightarrow S$ a projective morphism and $G$ a finite flat abelian group scheme over $X$. We also develop a theory of compactly supported cohomology for finite flat abelian group schemes, describe cohomology in terms of the cotangent complex for group schemes of height $1$, and relate the Dieudonne modules of the group schemes $R^if_*mu _p$ to cohomology generalizing work of Illusie. A higher categorical version of our main representability results is also presented.
139 - Sophie Morel 2018
The goal of this paper is to calculate the trace of the composition of a Hecke correspondence and a (high enough) power of the Frobenius at a good place on the intersection cohomology of the Satake-Baily-Borel compactification of certain Shimura varieties, to stabilize the result for Shimura varieties associated to unitary groups over $mathbb{Q}$ and to give applications of this calculations using base change from these unitary groups to $GL_n$. ----- Le but de ce texte est de calculer la trace dune correspondance de Hecke composee avec une puissance (assez grande) du Frobenius en une bonne place sur la cohomologie dintersection de la compactification de Satake-Baily-Borel de certaines varietes de Shimura, de stabiliser le resultat obtenu pour les varietes de Shimura associees aux groupes unitaires sur $mathbb{Q}$, et de donner des applications de ces calculs en utilisant le changement de base de ces groupes unitaires a $GL_n$.
137 - Gerard van der Geer 2016
This is a report on a joint project in experimental mathematics with Jonas Bergstrom and Carel Faber where we obtain information about modular forms by counting curves over finite fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا