No Arabic abstract
Based on the concept of constructive interference (CI), multiuser interference (MUI) has recently been shown to be beneficial for communication secrecy. A few CI-based secure precoding algorithms have been proposed that use both the channel state information (CSI) and knowledge of the instantaneous transmit symbols. In this paper, we examine the CI-based secure precoding problem with a focus on smart eavesdroppers that exploit statistical information gleaned from the precoded data for symbol detection. Moreover, the impact of correlation between the main and eavesdropper channels is taken into account. We first modify an existing CI-based preocding scheme to better utilize the destructive impact of the interference. Then, we point out the drawback of both the existing and the new modified CI-based precoders when faced with a smart eavesdropper. To address this deficiency, we provide a general principle for precoder design and then give two specific design examples. Finally, the scenario where the eavesdroppers CSI is unavailable is studied. Numerical results show that although our modified CI-based precoder can achieve a better energy-secrecy trade-off than the existing approach, both have a limited secrecy benefit. On the contrary, the precoders developed using the new CI-design principle can achieve a much improved trade-off and significantly degrade the eavesdroppers performance.
In this paper, we focus on the physical layer security for a K-user multiple-input-single-output (MISO) wiretap channel in the presence of a malicious eavesdropper, where we propose several interference exploitation (IE) precoding schemes for different types of the eavesdropper. Specifically, in the case where a common eavesdropper decodes the signal directly and Eves full channel state information (CSI) is available at the transmitter, we show that the required transmit power can be further reduced by re-designing the `destructive region of the constellations for symbol-level precoding and re-formulating the power minimization problem. We further study the SINR balancing problems with the derived `complete destructive region with full, statistical and no Eves CSI, respectively, and show that the SINR balancing problem becomes non-convex with statistical or no Eves CSI. On the other hand, in the presence of a smart eavesdropper using maximal likelihood (ML) detection, the security cannot be guaranteed with all the existing approaches. To this end, we further propose a random jamming scheme (RJS) and a random precoding scheme (RPS), respectively. To solve the introduced convex/non-convex problems in an efficient manner, we propose an iterative algorithm for the convex ones based on the Karush-Kuhn-Tucker (KKT) conditions, and deal with the non-convex ones by resorting to Taylor expansions. Simulation results show that all proposed schemes outperform the existing works in secrecy performance, and that the proposed algorithm improves the computation efficiency significantly.
Interference Alignment is a new solution to over- come the problem of interference in multiuser wireless com- munication systems. Recently, the Compute-and-Forward (CF) transform has been proposed to approximate the capacity of K- user Gaussian Symmetric Interference Channel and practically perform Interference Alignment in wireless networks. However, this technique shows a random behavior in the achievable sum- rate, especially at high SNR. In this work, the origin of this random behavior is analyzed and a novel precoding technique based on the Golden Ratio is proposed to scale down the fadings experiences by the achievable sum-rate at high SNR.
A simple line network model is proposed to study the downlink cellular network. Without base station cooperation, the system is interference-limited. The interference limitation is overcome when the base stations are allowed to jointly encode the user signals, but the capacity-achieving dirty paper coding scheme can be too complex for practical implementation. A new linear precoding technique called soft interference nulling (SIN) is proposed, which performs at least as well as zero-forcing (ZF) beamforming under full network coordination. Unlike ZF, SIN allows the possibility of but over-penalizes interference. The SIN precoder is computed by solving a convex optimization problem, and the formulation is extended to multiple-antenna channels. SIN can be applied when only a limited number of base stations cooperate; it is shown that SIN under partial network coordination can outperform full network coordination ZF at moderate SNRs.
The feasibility of physical-layer-based security approaches for wireless communications in the presence of one or more eavesdroppers is hampered by channel conditions. In this paper, cooperation is investigated as an approach to overcome this problem and improve the performance of secure communications. In particular, a decode-and-forward (DF) based cooperative protocol is considered, and the objective is to design the system for secrecy capacity maximization or transmit power minimization. System design for the DF-based cooperative protocol is first studied by assuming the availability of global channel state information (CSI). For the case of one eavesdropper, an iterative scheme is proposed to obtain the optimal solution for the problem of transmit power minimization. For the case of multiple eavesdroppers, the problem of secrecy capacity maximization or transmit power minimization is in general intractable. Suboptimal system design is proposed by adding an additional constraint, i.e., the complete nulling of signals at all eavesdroppers, which yields simple closed-form solutions for the aforementioned two problems. Then, the impact of imperfect CSI of eavesdroppers on system design is studied, in which the ergodic secrecy capacity is of interest.
We investigate the reconfigurable intelligent surface (RIS) assisted downlink secure transmission where only the statistical channel of eavesdropper is available. To handle the stochastic ergodic secrecy rate (ESR) maximization problem, a deterministic lower bound of ESR (LESR) is derived. We aim to maximize the LESR by jointly designing the transmit beamforming at the access point (AP) and reflect beamforming by the phase shifts at the RIS. To solve the non-convex LESR maximization problem, we develop a novel penalty dual convex approximation (PDCA) algorithm based on the penalty dual decomposition (PDD) optimization framework, where the exacting constraints are penalized and dualized into the objective function as augmented Lagrangian components. The proposed PDCA algorithm performs double-loop iterations, i.e., the inner loop resorts to the block successive convex approximation (BSCA) to update the optimization variables; while the outer loop adjusts the Lagrange multipliers and penalty parameter of the augmented Lagrangian cost function. The convergence to a Karush-Kuhn-Tucker (KKT) solution is theoretically guaranteed with low computational complexity. Simulation results show that the proposed PDCA scheme is better than the commonly adopted alternating optimization (AO) scheme with the knowledge of statistical channel of eavesdropper.