No Arabic abstract
We investigate the reconfigurable intelligent surface (RIS) assisted downlink secure transmission where only the statistical channel of eavesdropper is available. To handle the stochastic ergodic secrecy rate (ESR) maximization problem, a deterministic lower bound of ESR (LESR) is derived. We aim to maximize the LESR by jointly designing the transmit beamforming at the access point (AP) and reflect beamforming by the phase shifts at the RIS. To solve the non-convex LESR maximization problem, we develop a novel penalty dual convex approximation (PDCA) algorithm based on the penalty dual decomposition (PDD) optimization framework, where the exacting constraints are penalized and dualized into the objective function as augmented Lagrangian components. The proposed PDCA algorithm performs double-loop iterations, i.e., the inner loop resorts to the block successive convex approximation (BSCA) to update the optimization variables; while the outer loop adjusts the Lagrange multipliers and penalty parameter of the augmented Lagrangian cost function. The convergence to a Karush-Kuhn-Tucker (KKT) solution is theoretically guaranteed with low computational complexity. Simulation results show that the proposed PDCA scheme is better than the commonly adopted alternating optimization (AO) scheme with the knowledge of statistical channel of eavesdropper.
This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals (UTs) to a multi-antenna base station (BS). For reducing the signaling overhead, only partial channel state information (CSI), including the instantaneous CSI between the RIS and the BS as well as the slowly varying statistical CSI between the UTs and the RIS, is exploited in our investigation. In particular, an optimization framework is proposed for jointly designing the transmit covariance matrices of the UTs and the RIS phase shift matrix to maximize the system global energy efficiency (GEE) with partial CSI. We first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, to facilitate the design of the transmit power allocation matrices and the RIS phase shifts, we derive an asymptotically deterministic equivalent of the objective function with the aid of random matrix theory. We further propose a suboptimal algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the considerable GEE gains provided by the RIS-assisted transmission scheme over the traditional baselines.
Employing reconfigurable intelligent surfaces (RIS) is emerging as a game-changer candidate, thanks to their unique capabilities in improving the power efficiency and supporting the ubiquity of future wireless communication systems. Conventionally, a wireless network design has been limited to the communicating end points, i.e., the transmitter and the receiver. In general, we take advantage of the imposed channel state knowledge to manipulate the transmitted signal and to improve the detection quality at the receiver. With the aid of RISs, and to some extent, the propagation channel has become a part of the design problem. In this paper, we consider a single-input single-output cooperative network and investigate the effect of using RISs in enhancing the physical layer security of the system. Specifically, we formulate an optimization problem to study the effectiveness of the RIS in improving the system secrecy by introducing a weighted variant of the secrecy capacity definition. Numerical simulations are provided to show the design trade-offs and to present the superiority of RIS-assisted networks over the conventional ones in terms of the systems secrecy performance.
In practice, residual transceiver hardware impairments inevitably lead to distortion noise which causes the performance loss. In this paper, we study the robust transmission design for a reconfigurable intelligent surface (RIS)-aided secure communication system in the presence of transceiver hardware impairments. We aim for maximizing the secrecy rate while ensuring the transmit power constraint on the active beamforming at the base station and the unit-modulus constraint on the passive beamforming at the RIS. To address this problem, we adopt the alternate optimization method to iteratively optimize one set of variables while keeping the other set fixed. Specifically, the successive convex approximation (SCA) method is used to solve the active beamforming optimization subproblem, while the passive beamforming is obtained by using the semidefinite program (SDP) method. Numerical results illustrate that the proposed transmission design scheme is more robust to the hardware impairments than the conventional non-robust scheme that ignores the impact of the hardware impairments.
Reconfigurable intelligent surfaces (RISs) have been recently considered as a promising candidate for energy-efficient solutions in future wireless networks. Their dynamic and lowpower configuration enables coverage extension, massive connectivity, and low-latency communications. Due to a large number of unknown variables referring to the RIS unit elements and the transmitted signals, channel estimation and signal recovery in RIS-based systems are the ones of the most critical technical challenges. To address this problem, we focus on the RIS-assisted multi-user wireless communication system and present a joint channel estimation and signal recovery algorithm in this paper. Specifically, we propose a bidirectional approximate message passing algorithm that applies the Taylor series expansion and Gaussian approximation to simplify the sum-product algorithm in the formulated problem. Our simulation results show that the proposed algorithm shows the superiority over a state-of-art benchmark method. We also provide insights on the impact of different RIS parameter settings on the proposed algorithms.
Reconfigurable intelligent surfaces (RISs) are envisioned to be a disruptive wireless communication technique that is capable of reconfiguring the wireless propagation environment. In this paper, we study a far-field RIS-assisted multiple-input single-output (MISO) communication system operating in free space. To maximize the received power of the receiver from the physics and electromagnetic nature point of view, an optimization, including beamforming of the transmitter, phase shifts of the RIS, orientation and position of the RIS is formulated and solved. After exploiting the property of line-of-sight (LoS), we derive closed-form solutions of beamforming and phase shifts. For the non-trivial RIS position optimization problem in arbitrary three-dimensional space, a dimensional-reducing theory is proved. The simulation results show that the proposed closed-form beamforming and phase shifts are near-optimal solutions. Besides, the RIS significantly enhances the performance of the communication system when it is deployed at the optimal position.