Do you want to publish a course? Click here

Secure Wireless Communications via Cooperation

186   0   0.0 ( 0 )
 Added by Lun Dong
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

The feasibility of physical-layer-based security approaches for wireless communications in the presence of one or more eavesdroppers is hampered by channel conditions. In this paper, cooperation is investigated as an approach to overcome this problem and improve the performance of secure communications. In particular, a decode-and-forward (DF) based cooperative protocol is considered, and the objective is to design the system for secrecy capacity maximization or transmit power minimization. System design for the DF-based cooperative protocol is first studied by assuming the availability of global channel state information (CSI). For the case of one eavesdropper, an iterative scheme is proposed to obtain the optimal solution for the problem of transmit power minimization. For the case of multiple eavesdroppers, the problem of secrecy capacity maximization or transmit power minimization is in general intractable. Suboptimal system design is proposed by adding an additional constraint, i.e., the complete nulling of signals at all eavesdroppers, which yields simple closed-form solutions for the aforementioned two problems. Then, the impact of imperfect CSI of eavesdroppers on system design is studied, in which the ergodic secrecy capacity is of interest.



rate research

Read More

In this paper, a backscatter cooperation (BC) scheme is proposed for non-orthogonal multiple access (NOMA) downlink transmission. The key idea is to enable one user to split and then backscatter part of its received signals to improve the reception at another user. To evaluate the performance of the proposed BC-NOMA scheme, three benchmark schemes are introduced. They are the non-cooperation (NC)-NOMA scheme, the conventional relaying (CR)-NOMA scheme, and the incremental relaying (IR)-NOMA scheme. For all these schemes, the analytical expressions of the minimum total power to avoid information outage are derived, based on which their respective outage performance, expected rates, and diversity-multiplexing trade-off (DMT) are investigated. Analytical results show that the proposed BC-NOMA scheme strictly outperforms the NC-NOMA scheme in terms of all the three metrics. Furthermore, theoretical analyses are validated via Monte-Carlo simulations. It is shown that unlike the CR-NOMA scheme and the IR-NOMA scheme, the proposed BC-NOMA scheme can enhance the transmission reliability without impairing the transmission rate, which makes backscattering an appealing solution to cooperative NOMA downlinks.
The fading wire-tap channel is investigated, where the source-to-destination channel and the source-to-wire-tapper channel are corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state information is assumed to be known at both the transmitter and the receiver. The parallel wire-tap channel with independent subchannels is first studied, which serves as an information-theoretic model for the fading wire-tap channel. The secrecy capacity of the parallel wire-tap channel is established. This result is then specialized to give the secrecy capacity of the fading wire-tap channel, which is achieved with the source node dynamically changing the power allocation according to the channel state realization. An optimal source power allocation is obtained to achieve the secrecy capacity.
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over the Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with perfect secrecy. That is, each user would like to obtain its own message reliably and confidentially. First, a computable Sato-type outer bound on the secrecy capacity region is provided for a multi-antenna broadcast channel with confidential messages. Next, a dirty-paper secure coding scheme and its simplified version are described. For each case, the corresponding achievable rate region is derived under the perfect secrecy requirement. Finally, two numerical examples demonstrate that the Sato-type outer bound is consistent with the boundary of the simplified dirty-paper coding secrecy rate region.
Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.
We investigate the optimality and power allocation algorithm of beam domain transmission for single-cell massive multiple-input multiple-output (MIMO) systems with a multi-antenna passive eavesdropper. Focusing on the secure massive MIMO downlink transmission with only statistical channel state information of legitimate users and the eavesdropper at base station, we introduce a lower bound on the achievable ergodic secrecy sum-rate, from which we derive the condition for eigenvectors of the optimal input covariance matrices. The result shows that beam domain transmission can achieve optimal performance in terms of secrecy sum-rate lower bound maximization. For the case of single-antenna legitimate users, we prove that it is optimal to allocate no power to the beams where the beam gains of the eavesdropper are stronger than those of legitimate users in order to maximize the secrecy sum-rate lower bound. Then, motivated by the concave-convex procedure and the large dimension random matrix theory, we develop an efficient iterative and convergent algorithm to optimize power allocation in the beam domain. Numerical simulations demonstrate the tightness of the secrecy sum-rate lower bound and the near-optimal performance of the proposed iterative algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا