Do you want to publish a course? Click here

Compute-and-Forward for the Interference Channel: Diversity Precoding

125   0   0.0 ( 0 )
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Interference Alignment is a new solution to over- come the problem of interference in multiuser wireless com- munication systems. Recently, the Compute-and-Forward (CF) transform has been proposed to approximate the capacity of K- user Gaussian Symmetric Interference Channel and practically perform Interference Alignment in wireless networks. However, this technique shows a random behavior in the achievable sum- rate, especially at high SNR. In this work, the origin of this random behavior is analyzed and a novel precoding technique based on the Golden Ratio is proposed to scale down the fadings experiences by the achievable sum-rate at high SNR.



rate research

Read More

The compute-and-forward (CoF) is a relaying protocol, which uses algebraic structured codes to harness the interference and remove the noise in wireless networks. We propose the use of phase precoders at the transmitters of a network, where relays apply CoF strategy. We define the {em phase precoded computation rate} and show that it is greater than the original computation rate of CoF protocol. We further give a new low-complexity method for finding network equations. We finally show that the proposed precoding scheme increases the degrees-of-freedom (DoF) of CoF protocol. This overcomes the limitations on the DoF of the CoF protocol, recently presented by Niesen and Whiting. Using tools from Diophantine approximation and algebraic geometry, we prove the existence of a phase precoder that approaches the maximum DoF when the number of transmitters tends to infinity.
We study the transmission of confidential messages across a wireless broadcast channel with K>2 receivers and K helpers. The goal is to transmit all messages reliably to their intended receivers while keeping them confidential from the unintended receivers. We design a codebook based on nested lattice structure, cooperative jamming, lattice alignment, and i.i.d. coding. Moreover, we exploit the asymmetric compute-and-forward decoding strategy to handle finite SNR regimes. Unlike previous alignment schemes, our achievable rates are attainable at any finite SNR value. Also, we show that our scheme achieves the optimal sum secure degrees of freedom of 1 for the K-receiver Gaussian broadcast channel with K confidential messages and K helpers.
Compute-and-Forward is an emerging technique to deal with interference. It allows the receiver to decode a suitably chosen integer linear combination of the transmitted messages. The integer coefficients should be adapted to the channel fading state. Optimizing these coefficients is a Shortest Lattice Vector (SLV) problem. In general, the SLV problem is known to be prohibitively complex. In this paper, we show that the particular SLV instance resulting from the Compute-and-Forward problem can be solved in low polynomial complexity and give an explicit deterministic algorithm that is guaranteed to find the optimal solution.
We present a modified compute-and-forward scheme which utilizes Channel State Information at the Transmitters (CSIT) in a natural way. The modified scheme allows different users to have different coding rates, and use CSIT to achieve larger rate region. This idea is applicable to all systems which use the compute-and-forward technique and can be arbitrarily better than the regular scheme in some settings.
In a recent work, Nazer and Gastpar proposed the Compute-and-Forward strategy as a physical-layer network coding scheme. They described a code structure based on nested lattices whose algebraic structure makes the scheme reliable and efficient. In this work, we consider the implementation of their scheme for real Gaussian channels and one dimensional lattices. We relate the maximization of the transmission rate to the lattice shortest vector problem. We explicit, in this case, the maximum likelihood criterion and show that it can be implemented by using an Inhomogeneous Diophantine Approximation algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا