No Arabic abstract
A system of cooperative unmanned aerial vehicles (UAVs) is a group of agents interacting with each other and the surrounding environment to achieve a specific task. In contrast with a single UAV, UAV swarms are expected to benefit efficiency, flexibility, accuracy, robustness, and reliability. However, the provision of external communications potentially exposes them to an additional layer of faults, failures, uncertainties, and cyber-attacks and can contribute to the propagation of error from one component to other components in a network. Also, other challenges such as complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion should be addressed adequately. The main applications of cooperative UAVs are border patrol; search and rescue; surveillance; mapping; military. Challenges to be addressed in decision and control in cooperative systems may include the complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion. In this paper, emerging topics in the field of cooperative UAVs control and their associated practical approaches are reviewed.
This paper investigates the cooperative control of multiple unmanned and manned vehicles via an output containment control approach for heterogeneous discrete-time multiagent systems. The unmanned vehicles act as leading vehicles to guide the manned vehicles, i.e., following vehicles. The objective is to develop a distributed output feedback control law such that the output of the following vehicles can converge to the convex hull spanned by the output of the leading vehicles exponentially. The convex hull formed by the output of the leading vehicles and the system matrix of leading vehicles are estimated via a distributed containment observer. Based on this observer, a distributed dynamic output feedback control protocol is first devised for heterogeneous discrete-time multi-agent systems using only neighboring relative output information. The proof is depicted by showing certain output containment errors converge to zero exponentially, which indicates the containment control objective is well achieved. A distributed dynamic state-feedback control law is deduced as a special case of the output feedback control. Finally, numerical simulations with application to cooperative control of multiple vehicles validate the effectiveness and the computational feasibility of the proposed control protocols.
In the next few years, smart farming will reach each and every nook of the world. The prospects of using unmanned aerial vehicles (UAV) for smart farming are immense. However, the cost and the ease in controlling UAVs for smart farming might play an important role for motivating farmers to use UAVs in farming. Mostly, UAVs are controlled by remote controllers using radio waves. There are several technologies such as WiFi or ZigBee that are also used for controlling UAVs. However, Smart Bluetooth (also referred to as Bluetooth Low Energy) is a wireless technology used to transfer data over short distances. Bluetooth smart is cheaper than other technologies and has the advantage of being available on every smart phone. Farmers can use any smart phone to operate their respective UAVs along with Bluetooth Smart enabled agricultural sensors in the future. However, certain requirements and challenges need to be addressed before UAVs can be operated for smart agriculture-related applications. Hence, in this article, an attempt has been made to explore the types of sensors suitable for smart farming, potential requirements and challenges for operating UAVs in smart agriculture. We have also identified the future applications of using UAVs in smart farming.
In modern networks, the use of drones as mobile base stations (MBSs) has been discussed for coverage flexibility. However, the realization of drone-based networks raises several issues. One of the critical issues is drones are extremely power-hungry. To overcome this, we need to characterize a new type of drones, so-called charging drones, which can deliver energy to MBS drones. Motivated by the fact that the charging drones also need to be charged, we deploy ground-mounted charging towers for delivering energy to the charging drones. We introduce a new energy-efficiency maximization problem, which is partitioned into two independently separable tasks. More specifically, as our first optimization task, two-stage charging matching is proposed due to the inherent nature of our network model, where the first matching aims to schedule between charging towers and charging drones while the second matching solves the scheduling between charging drones and MBS drones. We analyze how to convert the formulation containing non-convex terms to another one only with convex terms. As our second optimization task, each MBS drone conducts energy-aware time-average transmit power allocation minimization subject to stability via Lyapunov optimization. Our solutions enable the MBS drones to extend their lifetimes; in turn, network coverage-time can be extended.
The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate the more that $45 Billion market value of UAV usage. In this survey, we present UAV civil applications and their challenges. We also discuss current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including: charging challenges, collision avoidance and swarming challenges, and networking and security related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.
The Internet of Things (IoT) will soon be omnipresent and billions of sensors and actuators will support our industries and well-being. IoT devices are embedded systems that are connected using wireless technology for most of the cases. The availability of the wireless network serving the IoT, the privacy, integrity, and trustworthiness of the data are of critical importance, since IoT will drive businesses and personal decisions. This paper proposes a new approach in the wireless security domain that leverages advanced wireless technology and the emergence of the unmanned aerial system or vehicle (UAS or UAV). We consider the problem of eavesdropping and analyze how UAVs can aid in reducing, or overcoming this threat in the mobile IoT context. The results show that huge improvements in terms of channel secrecy rate can be achieved when UAVs assist base stations for relaying the information to the desired IoT nodes. Our approach is technology agnostic and can be expanded to address other communications security aspects.