Do you want to publish a course? Click here

Unmanned Aerial Vehicles: A Survey on Civil Applications and Key Research Challenges

70   0   0.0 ( 0 )
 Added by Hazim Shakhatreh
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate the more that $45 Billion market value of UAV usage. In this survey, we present UAV civil applications and their challenges. We also discuss current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including: charging challenges, collision avoidance and swarming challenges, and networking and security related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.

rate research

Read More

In the next few years, smart farming will reach each and every nook of the world. The prospects of using unmanned aerial vehicles (UAV) for smart farming are immense. However, the cost and the ease in controlling UAVs for smart farming might play an important role for motivating farmers to use UAVs in farming. Mostly, UAVs are controlled by remote controllers using radio waves. There are several technologies such as WiFi or ZigBee that are also used for controlling UAVs. However, Smart Bluetooth (also referred to as Bluetooth Low Energy) is a wireless technology used to transfer data over short distances. Bluetooth smart is cheaper than other technologies and has the advantage of being available on every smart phone. Farmers can use any smart phone to operate their respective UAVs along with Bluetooth Smart enabled agricultural sensors in the future. However, certain requirements and challenges need to be addressed before UAVs can be operated for smart agriculture-related applications. Hence, in this article, an attempt has been made to explore the types of sensors suitable for smart farming, potential requirements and challenges for operating UAVs in smart agriculture. We have also identified the future applications of using UAVs in smart farming.
A system of cooperative unmanned aerial vehicles (UAVs) is a group of agents interacting with each other and the surrounding environment to achieve a specific task. In contrast with a single UAV, UAV swarms are expected to benefit efficiency, flexibility, accuracy, robustness, and reliability. However, the provision of external communications potentially exposes them to an additional layer of faults, failures, uncertainties, and cyber-attacks and can contribute to the propagation of error from one component to other components in a network. Also, other challenges such as complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion should be addressed adequately. The main applications of cooperative UAVs are border patrol; search and rescue; surveillance; mapping; military. Challenges to be addressed in decision and control in cooperative systems may include the complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and cohesion. In this paper, emerging topics in the field of cooperative UAVs control and their associated practical approaches are reviewed.
Unmanned Aerial Vehicles (UAV)-based civilian or military applications become more critical to serving civilian and/or military missions. The significantly increased attention on UAV applications also has led to security concerns particularly in the context of networked UAVs. Networked UAVs are vulnerable to malicious attacks over open-air radio space and accordingly, intrusion detection systems (IDSs) have been naturally derived to deal with the vulnerabilities and/or attacks. In this paper, we briefly survey the state-of-the-art IDS mechanisms that deal with vulnerabilities and attacks under networked UAV environments. In particular, we classify the existing IDS mechanisms according to information gathering sources, deployment strategies, detection methods, detection states, IDS acknowledgment, and intrusion types. We conclude this paper with research challenges, insights, and future research directions to propose a networked UAV-IDS system which meets required standards of effectiveness and efficiency in terms of the goals of both security and performance.
The capabilities of autonomous flight with unmanned aerial vehicles (UAVs) have significantly increased in recent times. However, basic problems such as fast and robust geo-localization in GPS-denied environments still remain unsolved. Existing research has primarily concentrated on improving the accuracy of localization at the cost of long and varying computation time in various situations, which often necessitates the use of powerful ground station machines. In order to make image-based geo-localization online and pragmatic for lightweight embedded systems on UAVs, we propose a framework that is reliable in changing scenes, flexible about computing resource allocation and adaptable to common camera placements. The framework is comprised of two stages: offline database preparation and online inference. At the first stage, color images and depth maps are rendered as seen from potential vehicle poses quantized over the satellite and topography maps of anticipated flying areas. A database is then populated with the global and local descriptors of the rendered images. At the second stage, for each captured real-world query image, top global matches are retrieved from the database and the vehicle pose is further refined via local descriptor matching. We present field experiments of image-based localization on two different UAV platforms to validate our results.
78 - Qi Liu , Shihua Yuan , Zirui Li 2020
Unmanned ground vehicles have a huge development potential in both civilian and military fields, and have become the focus of research in various countries. In addition, high-precision, high-reliability sensors are significant for UGVs efficient operation. This paper proposes a brief review on sensor technologies for UGVs. Firstly, characteristics of various sensors are introduced. Then the strengths and weaknesses of different sensors as well as their application scenarios are compared. Furthermore, sensor applications in some existing UGVs are summarized. Finally, the hotspots of sensor technologies are forecasted to point the development direction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا