No Arabic abstract
This work addresses the physical layer channel code design for an uncoordinated, frame- and slot-asynchronous random access protocol. Starting from the observation that collisions between two users yield very specific interference patterns, we define a surrogate channel model and propose different protograph low-density parity-check code designs. The proposed codes are both tested in a setup where the physical layer is abstracted, as well as on a more realistic channel model, where finite-length physical layer simulations of the entire asynchronous random access scheme, including decoding are carried out. We find that the abstracted physical layer model overestimates the performance when short blocks are considered. Additionally, the optimized codes show gains in supported channel traffic - a measure of the number of terminals that can be concurrently accommodated on the channel - of around 17% at a packet loss rate of 10^{-2} w.r.t. off-the-shelf codes.
The recent development of deep learning methods provides a new approach to optimize the belief propagation (BP) decoding of linear codes. However, the limitation of existing works is that the scale of neural networks increases rapidly with the codelength, thus they can only support short to moderate codelengths. From the point view of practicality, we propose a high-performance neural min-sum (MS) decoding method that makes full use of the lifting structure of protograph low-density parity-check (LDPC) codes. By this means, the size of the parameter array of each layer in the neural decoder only equals the number of edge-types for arbitrary codelengths. In particular, for protograph LDPC codes, the proposed neural MS decoder is constructed in a special way such that identical parameters are shared by a bundle of edges derived from the same edge-type. To reduce the complexity and overcome the vanishing gradient problem in training the proposed neural MS decoder, an iteration-by-iteration (i.e., layer-by-layer in neural networks) greedy training method is proposed. With this, the proposed neural MS decoder tends to be optimized with faster convergence, which is aligned with the early termination mechanism widely used in practice. To further enhance the generalization ability of the proposed neural MS decoder, a codelength/rate compatible training method is proposed, which randomly selects samples from a set of codes lifted from the same base code. As a theoretical performance evaluation tool, a trajectory-based extrinsic information transfer (T-EXIT) chart is developed for various decoders. Both T-EXIT and simulation results show that the optimized MS decoding can provide faster convergence and up to 1dB gain compared with the plain MS decoding and its variants with only slightly increased complexity. In addition, it can even outperform the sum-product algorithm for some short codes.
As a typical example of bandwidth-efficient techniques, bit-interleaved coded modulation with iterative decoding (BICM-ID) provides desirable spectral efficiencies in various wireless communication scenarios. In this paper, we carry out a comprehensive investigation on tail-biting (TB) spatially coupled protograph (SCP) low-density parity-check (LDPC) codes in BICM-ID systems. Specifically, we first develop a two-step design method to formulate a novel type of constellation mappers, referred to as labeling-bit-partial-match (LBPM) constellation mappers, for SC-P-based BICM-ID systems. The LBPM constellation mappers can be seamlessly combined with high-order modulations, such as M-ary phase-shift keying (PSK) and M-ary quadrature amplitude modulation (QAM). Furthermore, we conceive a new bit-level interleaving scheme, referred to as variable node matched mapping (VNMM) scheme, which can substantially exploit the structure feature of SC-P codes and the unequal protection-degree property of labeling bits to trigger the wave-like convergence for TB-SC-P codes. In addition, we propose a hierarchical extrinsic information transfer (EXIT) algorithm to predict the convergence performance (i.e., decoding thresholds) of the proposed SC-P-based BICM-ID systems. Theoretical analyses and simulation results illustrate that the LBPM-mapped SC-P-based BICM-ID systems are remarkably superior to the state-of-the-art mapped counterparts. Moreover, the proposed SC-P-based BICM-ID systems can achieve even better error performance with the aid of the VNMM scheme. As a consequence, the proposed LBPM constellation mappers and VNMM scheme make the SC-P-based BICM-ID systems a favorable choice for the future-generation wireless communication systems.
Totally asynchronous code-division multiple-access (CDMA) systems are addressed. In Part I, the fundamental limits of asynchronous CDMA systems are analyzed in terms of spectral efficiency and SINR at the output of the optimum linear detector. The focus of Part II is the design of low-complexity implementations of linear multiuser detectors in systems with many users that admit a multistage representation, e.g. reduced rank multistage Wiener filters, polynomial expansion detectors, weighted linear parallel interference cancellers. The effects of excess bandwidth, chip-pulse shaping, and time delay distribution on CDMA with suboptimum linear receiver structures are investigated. Recursive expressions for universal weight design are given. The performance in terms of SINR is derived in the large-system limit and the performance improvement over synchronous systems is quantified. The considerations distinguish between two ways of forming discrete-time statistics: chip-matched filtering and oversampling.
Braided convolutional codes (BCCs) are a class of spatially coupled turbo-like codes that can be described by a $(2,3)$-regular compact graph. In this paper, we introduce a family of $(d_v,d_c)$-regular GLDPC codes with convolutional code constraints (CC-GLDPC codes), which form an extension of classical BCCs to arbitrary regular graphs. In order to characterize the performance in the waterfall and error floor regions, we perform an analysis of the density evolution thresholds as well as the finite-length ensemble weight enumerators and minimum distances of the ensembles. In particular, we consider various ensembles of overall rate $R=1/3$ and $R=1/2$ and study the trade-off between variable node degree and strength of the component codes. We also compare the results to corresponding classical LDPC codes with equal degrees and rates. It is observed that for the considered LDPC codes with variable node degree $d_v>2$, we can find a CC-GLDPC code with smaller $d_v$ that offers similar or better performance in terms of BP and MAP thresholds at the expense of a negligible loss in the minimum distance.
Density evolution (DE) is one of the most powerful analytical tools for low-density parity-check (LDPC) codes on memoryless binary-input/symmetric-output channels. The case of non-symmetric channels is tackled either by the LDPC coset code ensemble (a channel symmetrizing argument) or by the generalized DE for linear codes on non-symmetric channels. Existing simulations show that the bit error rate performances of these two different approaches are nearly identical. This paper explains this phenomenon by proving that as the minimum check node degree $d_c$ becomes sufficiently large, the performance discrepancy of the linear and the coset LDPC codes is theoretically indistinguishable. This typicality of linear codes among the LDPC coset code ensemble provides insight into the concentration theorem of LDPC coset codes.