Do you want to publish a course? Click here

Learning to Decode Protograph LDPC Codes

146   0   0.0 ( 0 )
 Added by Jincheng Dai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The recent development of deep learning methods provides a new approach to optimize the belief propagation (BP) decoding of linear codes. However, the limitation of existing works is that the scale of neural networks increases rapidly with the codelength, thus they can only support short to moderate codelengths. From the point view of practicality, we propose a high-performance neural min-sum (MS) decoding method that makes full use of the lifting structure of protograph low-density parity-check (LDPC) codes. By this means, the size of the parameter array of each layer in the neural decoder only equals the number of edge-types for arbitrary codelengths. In particular, for protograph LDPC codes, the proposed neural MS decoder is constructed in a special way such that identical parameters are shared by a bundle of edges derived from the same edge-type. To reduce the complexity and overcome the vanishing gradient problem in training the proposed neural MS decoder, an iteration-by-iteration (i.e., layer-by-layer in neural networks) greedy training method is proposed. With this, the proposed neural MS decoder tends to be optimized with faster convergence, which is aligned with the early termination mechanism widely used in practice. To further enhance the generalization ability of the proposed neural MS decoder, a codelength/rate compatible training method is proposed, which randomly selects samples from a set of codes lifted from the same base code. As a theoretical performance evaluation tool, a trajectory-based extrinsic information transfer (T-EXIT) chart is developed for various decoders. Both T-EXIT and simulation results show that the optimized MS decoding can provide faster convergence and up to 1dB gain compared with the plain MS decoding and its variants with only slightly increased complexity. In addition, it can even outperform the sum-product algorithm for some short codes.



rate research

Read More

As a typical example of bandwidth-efficient techniques, bit-interleaved coded modulation with iterative decoding (BICM-ID) provides desirable spectral efficiencies in various wireless communication scenarios. In this paper, we carry out a comprehensive investigation on tail-biting (TB) spatially coupled protograph (SCP) low-density parity-check (LDPC) codes in BICM-ID systems. Specifically, we first develop a two-step design method to formulate a novel type of constellation mappers, referred to as labeling-bit-partial-match (LBPM) constellation mappers, for SC-P-based BICM-ID systems. The LBPM constellation mappers can be seamlessly combined with high-order modulations, such as M-ary phase-shift keying (PSK) and M-ary quadrature amplitude modulation (QAM). Furthermore, we conceive a new bit-level interleaving scheme, referred to as variable node matched mapping (VNMM) scheme, which can substantially exploit the structure feature of SC-P codes and the unequal protection-degree property of labeling bits to trigger the wave-like convergence for TB-SC-P codes. In addition, we propose a hierarchical extrinsic information transfer (EXIT) algorithm to predict the convergence performance (i.e., decoding thresholds) of the proposed SC-P-based BICM-ID systems. Theoretical analyses and simulation results illustrate that the LBPM-mapped SC-P-based BICM-ID systems are remarkably superior to the state-of-the-art mapped counterparts. Moreover, the proposed SC-P-based BICM-ID systems can achieve even better error performance with the aid of the VNMM scheme. As a consequence, the proposed LBPM constellation mappers and VNMM scheme make the SC-P-based BICM-ID systems a favorable choice for the future-generation wireless communication systems.
This work addresses the physical layer channel code design for an uncoordinated, frame- and slot-asynchronous random access protocol. Starting from the observation that collisions between two users yield very specific interference patterns, we define a surrogate channel model and propose different protograph low-density parity-check code designs. The proposed codes are both tested in a setup where the physical layer is abstracted, as well as on a more realistic channel model, where finite-length physical layer simulations of the entire asynchronous random access scheme, including decoding are carried out. We find that the abstracted physical layer model overestimates the performance when short blocks are considered. Additionally, the optimized codes show gains in supported channel traffic - a measure of the number of terminals that can be concurrently accommodated on the channel - of around 17% at a packet loss rate of 10^{-2} w.r.t. off-the-shelf codes.
Spatially coupled codes have been shown to universally achieve the capacity for a large class of channels. Many variants of such codes have been introduced to date. We discuss a further such variant that is particularly simple and is determined by a very small number of parameters. More precisely, we consider time-invariant low-density convolutional codes with very large constraint lengths. We show via simulations that, despite their extreme simplicity, such codes still show the threshold saturation behavior known from the spatially coupled codes discussed in the literature. Further, we show how the size of the typical minimum stopping set is related to basic parameters of the code. Due to their simplicity and good performance, these codes might be attractive from an implementation perspective.
Min-Sum decoding is widely used for decoding LDPC codes in many modern digital video broadcasting decoding due to its relative low complexity and robustness against quantization error. However, the suboptimal performance of the Min-Sum affects the integrated performance of wireless receivers. In this paper, we present the idea of adapting the scaling factor of the Min-Sum decoder with iterations through a simple approximation. For the ease of implementation the scaling factor can be changed in a staircase fashion. The stair step is designed to optimize the decoder performance and the required storage for its different values. The variable scaling factor proposed algorithm produces a non-trivial improvement of the performance of the Min-Sum decoding as verified by simulation results.
This paper considers density evolution for lowdensity parity-check (LDPC) and multi-edge type low-density parity-check (MET-LDPC) codes over the binary input additive white Gaussian noise channel. We first analyze three singleparameter Gaussian approximations for density evolution and discuss their accuracy under several conditions, namely at low rates, with punctured and degree-one variable nodes. We observe that the assumption of symmetric Gaussian distribution for the density-evolution messages is not accurate in the early decoding iterations, particularly at low rates and with punctured variable nodes. Thus single-parameter Gaussian approximation methods produce very poor results in these cases. Based on these observations, we then introduce a new density evolution approximation algorithm for LDPC and MET-LDPC codes. Our method is a combination of full density evolution and a single-parameter Gaussian approximation, where we assume a symmetric Gaussian distribution only after density-evolution messages closely follow a symmetric Gaussian distribution. Our method significantly improves the accuracy of the code threshold estimation. Additionally, the proposed method significantly reduces the computational time of evaluating the code threshold compared to full density evolution thereby making it more suitable for code design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا