Do you want to publish a course? Click here

Generalized LDPC Codes with Convolutional Code Constraints

88   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Braided convolutional codes (BCCs) are a class of spatially coupled turbo-like codes that can be described by a $(2,3)$-regular compact graph. In this paper, we introduce a family of $(d_v,d_c)$-regular GLDPC codes with convolutional code constraints (CC-GLDPC codes), which form an extension of classical BCCs to arbitrary regular graphs. In order to characterize the performance in the waterfall and error floor regions, we perform an analysis of the density evolution thresholds as well as the finite-length ensemble weight enumerators and minimum distances of the ensembles. In particular, we consider various ensembles of overall rate $R=1/3$ and $R=1/2$ and study the trade-off between variable node degree and strength of the component codes. We also compare the results to corresponding classical LDPC codes with equal degrees and rates. It is observed that for the considered LDPC codes with variable node degree $d_v>2$, we can find a CC-GLDPC code with smaller $d_v$ that offers similar or better performance in terms of BP and MAP thresholds at the expense of a negligible loss in the minimum distance.



rate research

Read More

Spatially coupled codes have been shown to universally achieve the capacity for a large class of channels. Many variants of such codes have been introduced to date. We discuss a further such variant that is particularly simple and is determined by a very small number of parameters. More precisely, we consider time-invariant low-density convolutional codes with very large constraint lengths. We show via simulations that, despite their extreme simplicity, such codes still show the threshold saturation behavior known from the spatially coupled codes discussed in the literature. Further, we show how the size of the typical minimum stopping set is related to basic parameters of the code. Due to their simplicity and good performance, these codes might be attractive from an implementation perspective.
In this paper, we propose a novel low complexity scaling strategy of min-sum decoding algorithm for irregular LDPC codes. In the proposed method, we generalize our previously proposed simplified Variable Scaled Min-Sum (SVS-min-sum) by replacing the sub-optimal starting value and heuristic update for the scaling factor sequence by optimized values. Density evolution and Nelder-Mead optimization are used offline, prior to the decoding, to obtain the optimal starting point and per iteration updating step size for the scaling factor sequence of the proposed scaling strategy. The optimization of these parameters proves to be of noticeable positive impact on the decoding performance. We used different DVB-T2 LDPC codes in our simulation. Simulation results show the superior performance (in both WER and latency) of the proposed algorithm to other Min-Sum based algorithms. In addition to that, generalized SVS-min-sum algorithm has very close performance to LLR-SPA with much lower complexity.
Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improved error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we study spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.
85 - Eshed Ram , Yuval Cassuto 2018
This paper presents a theoretical study of a new type of LDPC codes motivated by practical storage applications. LDPCL codes (suffix L represents locality) are LDPC codes that can be decoded either as usual over the full code block, or locally when a smaller sub-block is accessed (to reduce latency). LDPCL codes are designed to maximize the error-correction performance vs. rate in the usual (global) mode, while at the same time providing a certain performance in the local mode. We develop a theoretical framework for the design of LDPCL codes. Our results include a design tool to construct an LDPC code with two data-protection levels: local and global. We derive theoretical results supporting this tool and we show how to achieve capacity with it. A trade-off between the gap to capacity and the number of full-block accesses is studied, and a finite-length analysis of ML decoding is performed to exemplify a trade-off between the locality capability and the full-block error-correcting capability.
170 - Eshed Ram , Yuval Cassuto 2019
A new type of spatially coupled low-density parity-check (SC-LDPC) codes motivated by practical storage applications is presented. SC-LDPCL codes (suffix L stands for locality) can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus offering flexible access to the coded information alongside the strong reliability of the global full-block decoding. Toward that, we propose constructions of SC-LDPCL codes that allow controlling the trade-off between local and global correction performance. In addition to local and global decoding, the paper develops a density-evolution analysis for a decoding mode we call semi-global decoding, in which the decoder has access to the requested sub-block plus a prescribed number of sub-blocks around it. SC-LDPCL codes are also studied under a channel model with variability across sub-blocks, for which decoding-performance lower bounds are derived.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا