Do you want to publish a course? Click here

Semi-supervised representation learning via dual autoencoders for domain adaptation

124   0   0.0 ( 0 )
 Added by Shuai Yang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Domain adaptation aims to exploit the knowledge in source domain to promote the learning tasks in target domain, which plays a critical role in real-world applications. Recently, lots of deep learning approaches based on autoencoders have achieved a significance performance in domain adaptation. However, most existing methods focus on minimizing the distribution divergence by putting the source and target data together to learn global feature representations, while they do not consider the local relationship between instances in the same category from different domains. To address this problem, we propose a novel Semi-Supervised Representation Learning framework via Dual Autoencoders for domain adaptation, named SSRLDA. More specifically, we extract richer feature representations by learning the global and local feature representations simultaneously using two novel autoencoders, which are referred to as marginalized denoising autoencoder with adaptation distribution (MDAad) and multi-class marginalized denoising autoencoder (MMDA) respectively. Meanwhile, we make full use of label information to optimize feature representations. Experimental results show that our proposed approach outperforms several state-of-the-art baseline methods.



rate research

Read More

While neural networks for learning representation of multi-view data have been previously proposed as one of the state-of-the-art multi-view dimension reduction techniques, how to make the representation discriminative with only a small amount of labeled data is not well-studied. We introduce a semi-supervised neural network model, named Multi-view Discriminative Neural Network (MDNN), for multi-view problems. MDNN finds nonlinear view-specific mappings by projecting samples to a common feature space using multiple coupled deep networks. It is capable of leveraging both labeled and unlabeled data to project multi-view data so that samples from different classes are separated and those from the same class are clustered together. It also uses the inter-view correlation between views to exploit the available information in both the labeled and unlabeled data. Extensive experiments conducted on four datasets demonstrate the effectiveness of the proposed algorithm for multi-view semi-supervised learning.
126 - Yuntao Du , Zhiwen Tan , Qian Chen 2020
Unsupervised domain adaptation aims at transferring knowledge from the labeled source domain to the unlabeled target domain. Previous adversarial domain adaptation methods mostly adopt the discriminator with binary or $K$-dimensional output to perform marginal or conditional alignment independently. Recent experiments have shown that when the discriminator is provided with domain information in both domains and label information in the source domain, it is able to preserve the complex multimodal information and high semantic information in both domains. Following this idea, we adopt a discriminator with $2K$-dimensional output to perform both domain-level and class-level alignments simultaneously in a single discriminator. However, a single discriminator can not capture all the useful information across domains and the relationships between the examples and the decision boundary are rarely explored before. Inspired by multi-view learning and latest advances in domain adaptation, besides the adversarial process between the discriminator and the feature extractor, we also design a novel mechanism to make two discriminators pit against each other, so that they can provide diverse information for each other and avoid generating target features outside the support of the source domain. To the best of our knowledge, it is the first time to explore a dual adversarial strategy in domain adaptation. Moreover, we also use the semi-supervised learning regularization to make the representations more discriminative. Comprehensive experiments on two real-world datasets verify that our method outperforms several state-of-the-art domain adaptation methods.
Current adversarial adaptation methods attempt to align the cross-domain features, whereas two challenges remain unsolved: 1) the conditional distribution mismatch and 2) the bias of the decision boundary towards the source domain. To solve these challenges, we propose a novel framework for semi-supervised domain adaptation by unifying the learning of opposite structures (UODA). UODA consists of a generator and two classifiers (i.e., the source-scattering classifier and the target-clustering classifier), which are trained for contradictory purposes. The target-clustering classifier attempts to cluster the target features to improve intra-class density and enlarge inter-class divergence. Meanwhile, the source-scattering classifier is designed to scatter the source features to enhance the decision boundarys smoothness. Through the alternation of source-feature expansion and target-feature clustering procedures, the target features are well-enclosed within the dilated boundary of the corresponding source features. This strategy can make the cross-domain features to be precisely aligned against the source bias simultaneously. Moreover, to overcome the model collapse through training, we progressively update the measurement of features distance and their representation via an adversarial training paradigm. Extensive experiments on the benchmarks of DomainNet and Office-home datasets demonstrate the superiority of our approach over the state-of-the-art methods.
We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a method that unifies the tasks of unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In an extensive experimental study, we compare its behavior with respective state-of-the-art techniques from SSL, SSDA, and UDA on vision classification tasks. We find AdaMatch either matches or significantly exceeds the state-of-the-art in each case using the same hyper-parameters regardless of the dataset or task. For example, AdaMatch nearly doubles the accuracy compared to that of the prior state-of-the-art on the UDA task for DomainNet and even exceeds the accuracy of the prior state-of-the-art obtained with pre-training by 6.4% when AdaMatch is trained completely from scratch. Furthermore, by providing AdaMatch with just one labeled example per class from the target domain (i.e., the SSDA setting), we increase the target accuracy by an additional 6.1%, and with 5 labeled examples, by 13.6%.
Despite the recent success of deep reinforcement learning (RL), domain adaptation remains an open problem. Although the generalization ability of RL agents is critical for the real-world applicability of Deep RL, zero-shot policy transfer is still a challenging problem since even minor visual changes could make the trained agent completely fail in the new task. To address this issue, we propose a two-stage RL agent that first learns a latent unified state representation (LUSR) which is consistent across multiple domains in the first stage, and then do RL training in one source domain based on LUSR in the second stage. The cross-domain consistency of LUSR allows the policy acquired from the source domain to generalize to other target domains without extra training. We first demonstrate our approach in variants of CarRacing games with customized manipulations, and then verify it in CARLA, an autonomous driving simulator with more complex and realistic visual observations. Our results show that this approach can achieve state-of-the-art domain adaptation performance in related RL tasks and outperforms prior approaches based on latent-representation based RL and image-to-image translation.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا