Do you want to publish a course? Click here

Dual Adversarial Domain Adaptation

127   0   0.0 ( 0 )
 Added by Yuntao Du
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Unsupervised domain adaptation aims at transferring knowledge from the labeled source domain to the unlabeled target domain. Previous adversarial domain adaptation methods mostly adopt the discriminator with binary or $K$-dimensional output to perform marginal or conditional alignment independently. Recent experiments have shown that when the discriminator is provided with domain information in both domains and label information in the source domain, it is able to preserve the complex multimodal information and high semantic information in both domains. Following this idea, we adopt a discriminator with $2K$-dimensional output to perform both domain-level and class-level alignments simultaneously in a single discriminator. However, a single discriminator can not capture all the useful information across domains and the relationships between the examples and the decision boundary are rarely explored before. Inspired by multi-view learning and latest advances in domain adaptation, besides the adversarial process between the discriminator and the feature extractor, we also design a novel mechanism to make two discriminators pit against each other, so that they can provide diverse information for each other and avoid generating target features outside the support of the source domain. To the best of our knowledge, it is the first time to explore a dual adversarial strategy in domain adaptation. Moreover, we also use the semi-supervised learning regularization to make the representations more discriminative. Comprehensive experiments on two real-world datasets verify that our method outperforms several state-of-the-art domain adaptation methods.



rate research

Read More

Domain adaptation aims to exploit the knowledge in source domain to promote the learning tasks in target domain, which plays a critical role in real-world applications. Recently, lots of deep learning approaches based on autoencoders have achieved a significance performance in domain adaptation. However, most existing methods focus on minimizing the distribution divergence by putting the source and target data together to learn global feature representations, while they do not consider the local relationship between instances in the same category from different domains. To address this problem, we propose a novel Semi-Supervised Representation Learning framework via Dual Autoencoders for domain adaptation, named SSRLDA. More specifically, we extract richer feature representations by learning the global and local feature representations simultaneously using two novel autoencoders, which are referred to as marginalized denoising autoencoder with adaptation distribution (MDAad) and multi-class marginalized denoising autoencoder (MMDA) respectively. Meanwhile, we make full use of label information to optimize feature representations. Experimental results show that our proposed approach outperforms several state-of-the-art baseline methods.
107 - Yuan Yao , Xutao Li , Yu Zhang 2020
Heterogeneous domain adaptation (HDA) tackles the learning of cross-domain samples with both different probability distributions and feature representations. Most of the existing HDA studies focus on the single-source scenario. In reality, however, it is not uncommon to obtain samples from multiple heterogeneous domains. In this article, we study the multisource HDA problem and propose a conditional weighting adversarial network (CWAN) to address it. The proposed CWAN adversarially learns a feature transformer, a label classifier, and a domain discriminator. To quantify the importance of different source domains, CWAN introduces a sophisticated conditional weighting scheme to calculate the weights of the source domains according to the conditional distribution divergence between the source and target domains. Different from existing weighting schemes, the proposed conditional weighting scheme not only weights the source domains but also implicitly aligns the conditional distributions during the optimization process. Experimental results clearly demonstrate that the proposed CWAN performs much better than several state-of-the-art methods on four real-world datasets.
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on improving the generalization ability of UDA models on clean examples without considering the adversarial robustness, which is crucial in real-world applications. Conventional adversarial training methods are not suitable for the adversarial robustness on the unlabeled target domain of UDA since they train models with adversarial examples generated by the supervised loss function. In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models. Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training. It utilizes both labeled and unlabeled domains and instills robustness without any adversarial intervention or label requirement during domain adaptation training. Experimental results show that our method significantly improves adversarial robustness compared to the baseline while keeping clean accuracy on various UDA benchmarks.
Deep domain adaptation models learn a neural network in an unlabeled target domain by leveraging the knowledge from a labeled source domain. This can be achieved by learning a domain-invariant feature space. Though the learned representations are separable in the source domain, they usually have a large variance and samples with different class labels tend to overlap in the target domain, which yields suboptimal adaptation performance. To fill the gap, a Fisher loss is proposed to learn discriminative representations which are within-class compact and between-class separable. Experimental results on two benchmark datasets show that the Fisher loss is a general and effective loss for deep domain adaptation. Noticeable improvements are brought when it is used together with widely adopted transfer criteria, including MMD, CORAL and domain adversarial loss. For example, an absolute improvement of 6.67% in terms of the mean accuracy is attained when the Fisher loss is used together with the domain adversarial loss on the Office-Home dataset.
In many real-world applications, we want to exploit multiple source datasets of similar tasks to learn a model for a different but related target dataset -- e.g., recognizing characters of a new font using a set of different fonts. While most recent research has considered ad-hoc combination rules to address this problem, we extend previous work on domain discrepancy minimization to develop a finite-sample generalization bound, and accordingly propose a theoretically justified optimization procedure. The algorithm we develop, Domain AggRegation Network (DARN), is able to effectively adjust the weight of each source domain during training to ensure relevant domains are given more importance for adaptation. We evaluate the proposed method on real-world sentiment analysis and digit recognition datasets and show that DARN can significantly outperform the state-of-the-art alternatives.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا