Do you want to publish a course? Click here

Highlight Every Step: Knowledge Distillation via Collaborative Teaching

90   0   0.0 ( 0 )
 Added by Oceangroup Ouc
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

High storage and computational costs obstruct deep neural networks to be deployed on resource-constrained devices. Knowledge distillation aims to train a compact student network by transferring knowledge from a larger pre-trained teacher model. However, most existing methods on knowledge distillation ignore the valuable information among training process associated with training results. In this paper, we provide a new Collaborative Teaching Knowledge Distillation (CTKD) strategy which employs two special teachers. Specifically, one teacher trained from scratch (i.e., scratch teacher) assists the student step by step using its temporary outputs. It forces the student to approach the optimal path towards the final logits with high accuracy. The other pre-trained teacher (i.e., expert teacher) guides the student to focus on a critical region which is more useful for the task. The combination of the knowledge from two special teachers can significantly improve the performance of the student network in knowledge distillation. The results of experiments on CIFAR-10, CIFAR-100, SVHN and Tiny ImageNet datasets verify that the proposed knowledge distillation method is efficient and achieves state-of-the-art performance.



rate research

Read More

Knowledge distillation is a method of transferring the knowledge from a pretrained complex teacher model to a student model, so a smaller network can replace a large teacher network at the deployment stage. To reduce the necessity of training a large teacher model, the recent literatures introduced a self-knowledge distillation, which trains a student network progressively to distill its own knowledge without a pretrained teacher network. While Self-knowledge distillation is largely divided into a data augmentation based approach and an auxiliary network based approach, the data augmentation approach looses its local information in the augmentation process, which hinders its applicability to diverse vision tasks, such as semantic segmentation. Moreover, these knowledge distillation approaches do not receive the refined feature maps, which are prevalent in the object detection and semantic segmentation community. This paper proposes a novel self-knowledge distillation method, Feature Refinement via Self-Knowledge Distillation (FRSKD), which utilizes an auxiliary self-teacher network to transfer a refined knowledge for the classifier network. Our proposed method, FRSKD, can utilize both soft label and feature-map distillations for the self-knowledge distillation. Therefore, FRSKD can be applied to classification, and semantic segmentation, which emphasize preserving the local information. We demonstrate the effectiveness of FRSKD by enumerating its performance improvements in diverse tasks and benchmark datasets. The implemented code is available at https://github.com/MingiJi/FRSKD.
This paper addresses the problem of model compression via knowledge distillation. To this end, we propose a new knowledge distillation method based on transferring feature statistics, specifically the channel-wise mean and variance, from the teacher to the student. Our method goes beyond the standard way of enforcing the mean and variance of the student to be similar to those of the teacher through an $L_2$ loss, which we found it to be of limited effectiveness. Specifically, we propose a new loss based on adaptive instance normalization to effectively transfer the feature statistics. The main idea is to transfer the learned statistics back to the teacher via adaptive instance normalization (conditioned on the student) and let the teacher network evaluate via a loss whether the statistics learned by the student are reliably transferred. We show that our distillation method outperforms other state-of-the-art distillation methods over a large set of experimental settings including different (a) network architectures, (b) teacher-student capacities, (c) datasets, and (d) domains.
176 - Guile Wu , Shaogang Gong 2020
Traditional knowledge distillation uses a two-stage training strategy to transfer knowledge from a high-capacity teacher model to a compact student model, which relies heavily on the pre-trained teacher. Recent online knowledge distillation alleviates this limitation by collaborative learning, mutual learning and online ensembling, following a one-stage end-to-end training fashion. However, collaborative learning and mutual learning fail to construct an online high-capacity teacher, whilst online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. In this work, we propose a novel Peer Collaborative Learning method for online knowledge distillation, which integrates online ensembling and network collaboration into a unified framework. Specifically, given a target network, we construct a multi-branch network for training, in which each branch is called a peer. We perform random augmentation multiple times on the inputs to peers and assemble feature representations outputted from peers with an additional classifier as the peer ensemble teacher. This helps to transfer knowledge from a high-capacity teacher to peers, and in turn further optimises the ensemble teacher. Meanwhile, we employ the temporal mean model of each peer as the peer mean teacher to collaboratively transfer knowledge among peers, which helps each peer to learn richer knowledge and facilitates to optimise a more stable model with better generalisation. Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet show that the proposed method significantly improves the generalisation of various backbone networks and outperforms the state-of-the-art methods.
Multi-modal learning is typically performed with network architectures containing modality-specific layers and shared layers, utilizing co-registered images of different modalities. We propose a novel learning scheme for unpaired cross-modality image segmentation, with a highly compact architecture achieving superior segmentation accuracy. In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI, and only employ modality-specific internal normalization layers which compute respective statistics. To effectively train such a highly compact model, we introduce a novel loss term inspired by knowledge distillation, by explicitly constraining the KL-divergence of our derived prediction distributions between modalities. We have extensively validated our approach on two multi-class segmentation problems: i) cardiac structure segmentation, and ii) abdominal organ segmentation. Different network settings, i.e., 2D dilated network and 3D U-net, are utilized to investigate our methods general efficacy. Experimental results on both tasks demonstrate that our novel multi-modal learning scheme consistently outperforms single-modal training and previous multi-modal approaches.
110 - Haoran Zhao , Xin Sun , Junyu Dong 2021
Recently, distillation approaches are suggested to extract general knowledge from a teacher network to guide a student network. Most of the existing methods transfer knowledge from the teacher network to the student via feeding the sequence of random mini-batches sampled uniformly from the data. Instead, we argue that the compact student network should be guided gradually using samples ordered in a meaningful sequence. Thus, it can bridge the gap of feature representation between the teacher and student network step by step. In this work, we provide a curriculum learning knowledge distillation framework via instance-level sequence learning. It employs the student network of the early epoch as a snapshot to create a curriculum for the student networks next training phase. We carry out extensive experiments on CIFAR-10, CIFAR-100, SVHN and CINIC-10 datasets. Compared with several state-of-the-art methods, our framework achieves the best performance with fewer iterations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا