No Arabic abstract
A statistical theory of rogue waves is proposed and tested against experimental data collected in a long water tank where random waves with different degrees of nonlinearity are mechanically generated and free to propagate along the flume. Strong evidence is given that the rogue waves observed in the tank are hydrodynamic instantons, that is, saddle point configurations of the action associated with the stochastic model of the wave system. As shown here, these hydrodynamic instantons are complex spatio-temporal wave field configurations, which can be defined using the mathematical framework of Large Deviation Theory and calculated via tailored numerical methods. These results indicate that the instantons describe equally well rogue waves that originate from a simple linear superposition mechanism (in weakly nonlinear conditions) or from a nonlinear focusing one (in strongly nonlinear conditions), paving the way for the development of a unified explanation to rogue wave formation.
We show experimentally that a stable wave propagating into a region characterized by an opposite current may become modulationaly unstable. Experiments have been performed in two independent wave tank facilities; both of them are equipped with a wavemaker and a pump for generating a current propagating in the opposite direction with respect to the waves. The experimental results support a recent conjecture based on a current-modified Nonlinear Schrodinger equation which establishes that rogue waves can be triggered by non-homogeneous current characterized by a negative horizontal velocity gradient.
We review the study of rogue waves and related instabilities in optical and oceanic environments, with particular focus on recent experimental developments. In optics, we emphasize results arising from the use of real-time measurement techniques, whilst in oceanography we consider insights obtained from analysis of real-world ocean wave data and controlled experiments in wave tanks. Although significant progress in understanding rogue waves has been made based on an analogy between wave dynamics in optics and hydrodynamics, these comparisons have predominantly focused on one-dimensional nonlinear propagation scenarios. As a result, there remains significant debate about the dominant physical mechanisms driving the generation of ocean rogue waves in the complex environment of the open sea. Here, we review state-of-the-art of rogue wave studies in optics and hydrodynamics, aiming to clearly identify similarities and differences between the results obtained in the two fields. In hydrodynamics, we take care to review results that support both nonlinear and linear interpretations of ocean rogue wave formation, and in optics, we also summarise results from an emerging area of research applying the measurement techniques developed for the study of rogue waves to dissipative soliton systems. We conclude with a discussion of important future research directions.
We report on an experimental realization of a bi-directional soliton gas in a 34~m-long wave flume in shallow water regime. We take advantage of the fission of a sinusoidal wave to inject continuously solitons that propagate along the tank, back and forth. Despite the unavoidable damping, solitons retain adiabatically their profile, while decaying. The outcome is the formation of a stationary state characterized by a dense soliton gas whose statistical properties are well described by a pure integrable dynamics. The basic ingredient in the gas, i.e. the two-soliton interaction, is studied in details and compared favourably with the analytical solutions of the Kaup-Boussinesq integrable equation. High resolution space-time measurements of the surface elevation in the wave flume provide a unique tool for studying experimentally the whole spectrum of excitations.
As an example for complex systems with extreme events we investigate ocean wave states exhibiting rogue waves. We present a statistical method of data analysis based on multi-point statistics which for the first time allows grasping extreme rogue wave events in a statistically highly satisfactory manner. The key to the success of the approach is mapping the complexity of multi-point data onto the statistics of hierarchically ordered height increments for different time scales for which we can show that a stochastic cascade process with Markov properties is governed by a Fokker-Planck equation. Conditional probabilities as well as the Fokker-Planck equation itself can be estimated directly from the available observational data. With this stochastic description surrogate data sets can in turn be generated allowing to work out arbitrary statistical features of the complex sea state in general and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for forecasting the occurrence of individual rogue waves based on precursory dynamics.
The Peregrine breather, today widely regarded as a prototype for spatio-temporally localized rogue waves on the ocean caused by nonlinear focusing, is analyzed by direct numerical simulations based on two-phase Navier-Stokes equations. A finite-volume approach with a volume of fluid method is applied to study the Peregrine breather dynamics up to the initial stages of wave breaking. The comparison of the numerical results with laboratory experiments to validate the numerical approach shows very good agreement and suggests that the chosen method is an effective tool to study modulation instability and breather dynamics in water waves with high accuracy even up to the onset of wave breaking. The numerical results also indicate some previously unnoticed characteristics of the flow fields below the water surface of breathers, which might be of significance for short-term prediction of rogue waves. Recurrent wave breaking is also observed.