Do you want to publish a course? Click here

Rogue waves and analogies in optics and oceanography

170   0   0.0 ( 0 )
 Added by John Dudley
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the study of rogue waves and related instabilities in optical and oceanic environments, with particular focus on recent experimental developments. In optics, we emphasize results arising from the use of real-time measurement techniques, whilst in oceanography we consider insights obtained from analysis of real-world ocean wave data and controlled experiments in wave tanks. Although significant progress in understanding rogue waves has been made based on an analogy between wave dynamics in optics and hydrodynamics, these comparisons have predominantly focused on one-dimensional nonlinear propagation scenarios. As a result, there remains significant debate about the dominant physical mechanisms driving the generation of ocean rogue waves in the complex environment of the open sea. Here, we review state-of-the-art of rogue wave studies in optics and hydrodynamics, aiming to clearly identify similarities and differences between the results obtained in the two fields. In hydrodynamics, we take care to review results that support both nonlinear and linear interpretations of ocean rogue wave formation, and in optics, we also summarise results from an emerging area of research applying the measurement techniques developed for the study of rogue waves to dissipative soliton systems. We conclude with a discussion of important future research directions.



rate research

Read More

We show experimentally that a stable wave propagating into a region characterized by an opposite current may become modulationaly unstable. Experiments have been performed in two independent wave tank facilities; both of them are equipped with a wavemaker and a pump for generating a current propagating in the opposite direction with respect to the waves. The experimental results support a recent conjecture based on a current-modified Nonlinear Schrodinger equation which establishes that rogue waves can be triggered by non-homogeneous current characterized by a negative horizontal velocity gradient.
A statistical theory of rogue waves is proposed and tested against experimental data collected in a long water tank where random waves with different degrees of nonlinearity are mechanically generated and free to propagate along the flume. Strong evidence is given that the rogue waves observed in the tank are hydrodynamic instantons, that is, saddle point configurations of the action associated with the stochastic model of the wave system. As shown here, these hydrodynamic instantons are complex spatio-temporal wave field configurations, which can be defined using the mathematical framework of Large Deviation Theory and calculated via tailored numerical methods. These results indicate that the instantons describe equally well rogue waves that originate from a simple linear superposition mechanism (in weakly nonlinear conditions) or from a nonlinear focusing one (in strongly nonlinear conditions), paving the way for the development of a unified explanation to rogue wave formation.
As an example for complex systems with extreme events we investigate ocean wave states exhibiting rogue waves. We present a statistical method of data analysis based on multi-point statistics which for the first time allows grasping extreme rogue wave events in a statistically highly satisfactory manner. The key to the success of the approach is mapping the complexity of multi-point data onto the statistics of hierarchically ordered height increments for different time scales for which we can show that a stochastic cascade process with Markov properties is governed by a Fokker-Planck equation. Conditional probabilities as well as the Fokker-Planck equation itself can be estimated directly from the available observational data. With this stochastic description surrogate data sets can in turn be generated allowing to work out arbitrary statistical features of the complex sea state in general and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for forecasting the occurrence of individual rogue waves based on precursory dynamics.
Nonlinear dynamics of surface gravity waves trapped by an opposing jet current is studied analytically and numerically. For wave fields narrowband in frequency but not necessarily with narrow angular distributions the developed asymptotic weakly nonlinear theory based on the modal approach of (V. Shrira, A. Slunyaev, J. Fluid. Mech, 738, 65, 2014) leads to the one-dimensional modified nonlinear Schr{o}dinger equation of self-focusing type for a single mode. Its solutions such as envelope solitons and breathers are considered to be prototypes of rogue waves; these solutions, in contrast to waves in the absence of currents, are robust with respect to transverse perturbations, which suggests potentially higher probability of rogue waves. Robustness of the long-lived analytical solutions in form of the modulated trapped waves and solitary wave groups is verified by direct numerical simulations of potential Euler equations.
The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrodinger equation (NLS). Within the class of exact NLS breather solutions on finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of both in time and space localized rational solutions are considered to be appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to construct strongly nonlinear localized waves focused both in time and space. The potential areas of applications of this time-reversal approach range from remote sensing to motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates and plasma, where the wave motion dynamics is governed by the NLS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا