Do you want to publish a course? Click here

Query-driven PAC-Learning for Reasoning

75   0   0.0 ( 0 )
 Added by Brendan Juba
 Publication date 2019
and research's language is English
 Authors Brendan Juba




Ask ChatGPT about the research

We consider the problem of learning rules from a data set that support a proof of a given query, under Valiants PAC-Semantics. We show how any backward proof search algorithm that is sufficiently oblivious to the contents of its knowledge base can be modified to learn such rules while it searches for a proof using those rules. We note that this gives such algorithms for standard logics such as chaining and resolution.



rate research

Read More

In order to meet usability requirements, most logic-based applications provide explanation facilities for reasoning services. This holds also for Description Logics, where research has focused on the explanation of both TBox reasoning and, more recently, query answering. Besides explaining the presence of a tuple in a query answer, it is important to explain also why a given tuple is missing. We address the latter problem for instance and conjunctive query answering over DL-Lite ontologies by adopting abductive reasoning; that is, we look for additions to the ABox that force a given tuple to be in the result. As reasoning tasks we consider existence and recognition of an explanation, and relevance and necessity of a given assertion for an explanation. We characterize the computational complexity of these problems for arbitrary, subset minimal, and cardinality minimal explanations.
100 - Alex Devonport , Adnane Saoud , 2021
Symbolic control techniques aim to satisfy complex logic specifications. A critical step in these techniques is the construction of a symbolic (discrete) abstraction, a finite-state system whose behaviour mimics that of a given continuous-state system. The methods used to compute symbolic abstractions, however, require knowledge of an accurate closed-form model. To generalize them to systems with unknown dynamics, we present a new data-driven approach that does not require closed-form dynamics, instead relying only the ability to evaluate successors of each state under given inputs. To provide guarantees for the learned abstraction, we use the Probably Approximately Correct (PAC) statistical framework. We first introduce a PAC-style behavioural relationship and an appropriate refinement procedure. We then show how the symbolic abstraction can be constructed to satisfy this new behavioural relationship. Moreover, we provide PAC bounds that dictate the number of data required to guarantee a prescribed level of accuracy and confidence. Finally, we present an illustrative example.
Traditional relational data interfaces require precise structured queries over potentially complex schemas. These rigid data retrieval mechanisms pose hurdles for non-expert users, who typically lack language expertise and are unfamiliar with the details of the schema. Query by Example (QBE) methods offer an alternative mechanism: users provide examples of their intended query output and the QBE system needs to infer the intended query. However, these approaches focus on the structural similarity of the examples and ignore the richer context present in the data. As a result, they typically produce queries that are too general, and fail to capture the users intent effectively. In this paper, we present SQuID, a system that performs semantic similarity-aware query intent discovery. Our work makes the following contributions: (1) We design an end-to-end system that automatically formulates select-project-join queries in an open-world setting, with optional group-by aggregation and intersection operators; a much larger class than prior QBE techniques. (2) We express the problem of query intent discovery using a probabilistic abduction model, that infers a query as the most likely explanation of the provided examples. (3) We introduce the notion of an abduction-ready database, which precomputes semantic properties and related statistics, allowing SQuID to achieve real-time performance. (4) We present an extensive empirical evaluation on three real-world datasets, including user-intent case studies, demonstrating that SQuID is efficient and effective, and outperforms machine learning methods, as well as the state-of-the-art in the related query reverse engineering problem.
This paper studies learning logic rules for reasoning on knowledge graphs. Logic rules provide interpretable explanations when used for prediction as well as being able to generalize to other tasks, and hence are critical to learn. Existing methods either suffer from the problem of searching in a large search space (e.g., neural logic programming) or ineffective optimization due to sparse rewards (e.g., techniques based on reinforcement learning). To address these limitations, this paper proposes a probabilistic model called RNNLogic. RNNLogic treats logic rules as a latent variable, and simultaneously trains a rule generator as well as a reasoning predictor with logic rules. We develop an EM-based algorithm for optimization. In each iteration, the reasoning predictor is first updated to explore some generated logic rules for reasoning. Then in the E-step, we select a set of high-quality rules from all generated rules with both the rule generator and reasoning predictor via posterior inference; and in the M-step, the rule generator is updated with the rules selected in the E-step. Experiments on four datasets prove the effectiveness of RNNLogic.
Efficient decision-making over continuously changing data is essential for many application domains such as cyber-physical systems, industry digitalization, etc. Modern stream reasoning frameworks allow one to model and solve various real-world problems using incremental and continuous evaluation of programs as new data arrives in the stream. Applied techniques use, e.g., Datalog-like materialization or truth maintenance algorithms to avoid costly re-computations, thus ensuring low latency and high throughput of a stream reasoner. However, the expressiveness of existing approaches is quite limited and, e.g., they cannot be used to encode problems with constraints, which often appear in practice. In this paper, we suggest a novel approach that uses the Conflict-Driven Constraint Learning (CDCL) to efficiently update legacy solutions by using intelligent management of learned constraints. In particular, we study the applicability of reinforcement learning to continuously assess the utility of learned constraints computed in previous invocations of the solving algorithm for the current one. Evaluations conducted on real-world reconfiguration problems show that providing a CDCL algorithm with relevant learned constraints from previous iterations results in significant performance improvements of the algorithm in stream reasoning scenarios. Under consideration for acceptance in TPLP.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا