No Arabic abstract
This paper studies learning logic rules for reasoning on knowledge graphs. Logic rules provide interpretable explanations when used for prediction as well as being able to generalize to other tasks, and hence are critical to learn. Existing methods either suffer from the problem of searching in a large search space (e.g., neural logic programming) or ineffective optimization due to sparse rewards (e.g., techniques based on reinforcement learning). To address these limitations, this paper proposes a probabilistic model called RNNLogic. RNNLogic treats logic rules as a latent variable, and simultaneously trains a rule generator as well as a reasoning predictor with logic rules. We develop an EM-based algorithm for optimization. In each iteration, the reasoning predictor is first updated to explore some generated logic rules for reasoning. Then in the E-step, we select a set of high-quality rules from all generated rules with both the rule generator and reasoning predictor via posterior inference; and in the M-step, the rule generator is updated with the rules selected in the E-step. Experiments on four datasets prove the effectiveness of RNNLogic.
The problem of knowledge graph (KG) reasoning has been widely explored by traditional rule-based systems and more recently by knowledge graph embedding methods. While logical rules can capture deterministic behavior in a KG they are brittle and mining ones that infer facts beyond the known KG is challenging. Probabilistic embedding methods are effective in capturing global soft statistical tendencies and reasoning with them is computationally efficient. While embedding representations learned from rich training data are expressive, incompleteness and sparsity in real-world KGs can impact their effectiveness. We aim to leverage the complementary properties of both methods to develop a hybrid model that learns both high-quality rules and embeddings simultaneously. Our method uses a cross feedback paradigm wherein, an embedding model is used to guide the search of a rule mining system to mine rules and infer new facts. These new facts are sampled and further used to refine the embedding model. Experiments on multiple benchmark datasets show the effectiveness of our method over other competitive standalone and hybrid baselines. We also show its efficacy in a sparse KG setting and finally explore the connection with negative sampling.
Biomedical knowledge graphs permit an integrative computational approach to reasoning about biological systems. The nature of biological data leads to a graph structure that differs from those typically encountered in benchmarking datasets. To understand the implications this may have on the performance of reasoning algorithms, we conduct an empirical study based on the real-world task of drug repurposing. We formulate this task as a link prediction problem where both compounds and diseases correspond to entities in a knowledge graph. To overcome apparent weaknesses of existing algorithms, we propose a new method, PoLo, that combines policy-guided walks based on reinforcement learning with logical rules. These rules are integrated into the algorithm by using a novel reward function. We apply our method to Hetionet, which integrates biomedical information from 29 prominent bioinformatics databases. Our experiments show that our approach outperforms several state-of-the-art methods for link prediction while providing interpretability.
One of the fundamental problems in Artificial Intelligence is to perform complex multi-hop logical reasoning over the facts captured by a knowledge graph (KG). This problem is challenging, because KGs can be massive and incomplete. Recent approaches embed KG entities in a low dimensional space and then use these embeddings to find the answer entities. However, it has been an outstanding challenge of how to handle arbitrary first-order logic (FOL) queries as present methods are limited to only a subset of FOL operators. In particular, the negation operator is not supported. An additional limitation of present methods is also that they cannot naturally model uncertainty. Here, we present BetaE, a probabilistic embedding framework for answering arbitrary FOL queries over KGs. BetaE is the first method that can handle a complete set of first-order logical operations: conjunction ($wedge$), disjunction ($vee$), and negation ($ eg$). A key insight of BetaE is to use probabilistic distributions with bounded support, specifically the Beta distribution, and embed queries/entities as distributions, which as a consequence allows us to also faithfully model uncertainty. Logical operations are performed in the embedding space by neural operators over the probabilistic embeddings. We demonstrate the performance of BetaE on answering arbitrary FOL queries on three large, incomplete KGs. While being more general, BetaE also increases relative performance by up to 25.4% over the current state-of-the-art KG reasoning methods that can only handle conjunctive queries without negation.
Knowledge Graph (KG) reasoning that predicts missing facts for incomplete KGs has been widely explored. However, reasoning over Temporal KG (TKG) that predicts facts in the future is still far from resolved. The key to predict future facts is to thoroughly understand the historical facts. A TKG is actually a sequence of KGs corresponding to different timestamps, where all concurrent facts in each KG exhibit structural dependencies and temporally adjacent facts carry informative sequential patterns. To capture these properties effectively and efficiently, we propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN), called RE-GCN, which learns the evolutional representations of entities and relations at each timestamp by modeling the KG sequence recurrently. Specifically, for the evolution unit, a relation-aware GCN is leveraged to capture the structural dependencies within the KG at each timestamp. In order to capture the sequential patterns of all facts in parallel, the historical KG sequence is modeled auto-regressively by the gate recurrent components. Moreover, the static properties of entities such as entity types, are also incorporated via a static graph constraint component to obtain better entity representations. Fact prediction at future timestamps can then be realized based on the evolutional entity and relation representations. Extensive experiments demonstrate that the RE-GCN model obtains substantial performance and efficiency improvement for the temporal reasoning tasks on six benchmark datasets. Especially, it achieves up to 11.46% improvement in MRR for entity prediction with up to 82 times speedup comparing to the state-of-the-art baseline.
Temporal Knowledge Graphs (TKGs) have been developed and used in many different areas. Reasoning on TKGs that predicts potential facts (events) in the future brings great challenges to existing models. When facing a prediction task, human beings usually search useful historical information (i.e., clues) in their memories and then reason for future meticulously. Inspired by this mechanism, we propose CluSTeR to predict future facts in a two-stage manner, Clue Searching and Temporal Reasoning, accordingly. Specifically, at the clue searching stage, CluSTeR learns a beam search policy via reinforcement learning (RL) to induce multiple clues from historical facts. At the temporal reasoning stage, it adopts a graph convolution network based sequence method to deduce answers from clues. Experiments on four datasets demonstrate the substantial advantages of CluSTeR compared with the state-of-the-art methods. Moreover, the clues found by CluSTeR further provide interpretability for the results.