Do you want to publish a course? Click here

Managing caching strategies for stream reasoning with reinforcement learning

92   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Efficient decision-making over continuously changing data is essential for many application domains such as cyber-physical systems, industry digitalization, etc. Modern stream reasoning frameworks allow one to model and solve various real-world problems using incremental and continuous evaluation of programs as new data arrives in the stream. Applied techniques use, e.g., Datalog-like materialization or truth maintenance algorithms to avoid costly re-computations, thus ensuring low latency and high throughput of a stream reasoner. However, the expressiveness of existing approaches is quite limited and, e.g., they cannot be used to encode problems with constraints, which often appear in practice. In this paper, we suggest a novel approach that uses the Conflict-Driven Constraint Learning (CDCL) to efficiently update legacy solutions by using intelligent management of learned constraints. In particular, we study the applicability of reinforcement learning to continuously assess the utility of learned constraints computed in previous invocations of the solving algorithm for the current one. Evaluations conducted on real-world reconfiguration problems show that providing a CDCL algorithm with relevant learned constraints from previous iterations results in significant performance improvements of the algorithm in stream reasoning scenarios. Under consideration for acceptance in TPLP.



rate research

Read More

Content-Centric Networking (CCN) research addresses the mismatch between the modern usage of the Internet and its outdated architecture. Importantly, CCN routers may locally cache frequently requested content in order to speed up delivery to end users. Thus, the issue of caching strategies arises, i.e., which content shall be stored and when it should be replaced. In this work, we employ novel techniques towards intelligent administration of CCN routers that autonomously switch between existing strategies in response to changing content request patterns. In particular, we present a router architecture for CCN networks that is controlled by rule-based stream reasoning, following the recent formal framework LARS which extends Answer Set Programming for streams. The obtained possibility for flexible router configuration at runtime allows for faster experimentation and may thus help to advance the further development of CCN. Moreover, the empirical evaluation of our feasibility study shows that the resulting caching agent may give significant performance gains.
Abstract symbolic reasoning, as required in domains such as mathematics and logic, is a key component of human intelligence. Solvers for these domains have important applications, especially to computer-assisted education. But learning to solve symbolic problems is challenging for machine learning algorithms. Existing models either learn from human solutions or use hand-engineered features, making them expensive to apply in new domains. In this paper, we instead consider symbolic domains as simple environments where states and actions are given as unstructured text, and binary rewards indicate whether a problem is solved. This flexible setup makes it easy to specify new domains, but search and planning become challenging. We introduce four environments inspired by the Mathematics Common Core Curriculum, and observe that existing Reinforcement Learning baselines perform poorly. We then present a novel learning algorithm, Contrastive Policy Learning (ConPoLe) that explicitly optimizes the InfoNCE loss, which lower bounds the mutual information between the current state and next states that continue on a path to the solution. ConPoLe successfully solves all four domains. Moreover, problem representations learned by ConPoLe enable accurate prediction of the categories of problems in a real mathematics curriculum. Our results suggest new directions for reinforcement learning in symbolic domains, as well as applications to mathematics education.
Attempts to render deep learning models interpretable, data-efficient, and robust have seen some success through hybridisation with rule-based systems, for example, in Neural Theorem Provers (NTPs). These neuro-symbolic models can induce interpretable rules and learn representations from data via back-propagation, while providing logical explanations for their predictions. However, they are restricted by their computational complexity, as they need to consider all possible proof paths for explaining a goal, thus rendering them unfit for large-scale applications. We present Conditional Theorem Provers (CTPs), an extension to NTPs that learns an optimal rule selection strategy via gradient-based optimisation. We show that CTPs are scalable and yield state-of-the-art results on the CLUTRR dataset, which tests systematic generalisation of neural models by learning to reason over smaller graphs and evaluating on larger ones. Finally, CTPs show better link prediction results on standard benchmarks in comparison with other neural-symbolic models, while being explainable. All source code and datasets are available online, at https://github.com/uclnlp/ctp.
As a contribution to the challenge of building game-playing AI systems, we develop and analyse a formal language for representing and reasoning about strategies. Our logical language builds on the existing general Game Description Language (GDL) and extends it by a standard modality for linear time along with two dual connectives to express preferences when combining strategies. The semantics of the language is provided by a standard state-transition model. As such, problems that require reasoning about games can be solved by the standard methods for reasoning about actions and change. We also endow the language with a specific semantics by which strategy formulas are understood as move recommendations for a player. To illustrate how our formalism supports automated reasoning about strategies, we demonstrate two example methods of implementation/: first, we formalise the semantic interpretation of our language in conjunction with game rules and strategy rules in the Situation Calculus; second, we show how the reasoning problem can be solved with Answer Set Programming.
74 - Brendan Juba 2019
We consider the problem of learning rules from a data set that support a proof of a given query, under Valiants PAC-Semantics. We show how any backward proof search algorithm that is sufficiently oblivious to the contents of its knowledge base can be modified to learn such rules while it searches for a proof using those rules. We note that this gives such algorithms for standard logics such as chaining and resolution.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا