Do you want to publish a course? Click here

Spin-phonon interaction increased by compressive strain in antiferromagnetic MnO thin films

166   0   0.0 ( 0 )
 Added by Alireza Kashir
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

MnO thin films with various thicknesses and strains were grown on MgO substrates by pulsed laser deposition, then characterized using x-ray diffraction and infrared reflectance spectroscopy. Films grown on (001)-oriented MgO substrates exhibit homogenous biaxial compressive strain which increases as the film thickness is reduced. For that reason, the frequency of doubly-degenerate phonon increases with the strain, and splits below Neel temperature TN due to the magnetic-exchange interaction. Films grown on (110)-oriented MgO substrates exhibit a huge phonon splitting already at room temperature due to the anisotropic in-plane compressive strain. Below TN, additional phonon is activated in the IR spectra; this trend is evidence for a spin-order-induced structural phase transition from tetragonal to monoclinic phase. Total phonon splitting is 55 cm-1 in (110)-oriented MnO film, which is more than twice the value in bulk MnO. This result is evidence that the nearest neighbor exchange interaction, which is responsible for the magnetically driven phonon splitting, is greatly increased in compressively strained films.



rate research

Read More

205 - K. P. Neupane , J. J. Neumeier , 2009
The structure, morphology, and electrical properties of epitaxial a-axis oriented thin films of Nd(0.2)Sr(0.8)MnO(3) are reported for thicknesses 10 nm <= t <= 150 nm. Films were grown with both tensile and compressive strain on various substrates. It is found that the elongated crystallographic c-axes of the films remain fully strained to the substrates for all thicknesses in both strain states. Relaxation of the a and b axes is observed for t>= 65 nm with films grown under tensile strain developing uniaxial crack arrays (running along the c axis) due to a highly anisotropic thermal expansion. For the latter films, the room-temperature in-plane electrical resistivity anisotropy, rho_b/rho_c, increases approximately exponentially with increasing film thickness to values of ~1000 in the thickest films studied. Films under tension have their Neel temperatures enhanced by ~25 K independent of thickness, consistent with an enhancement of ferromagnetic exchange along their expanded c axes.
The spin states of Co$^{3+}$ ions in perovskite-type LaCoO$_3$, governed by complex interplay between the electron-lattice interactions and the strong electron correlations, still remain controversial due to the lack of experimental techniques which can detect directly. In this letter, we revealed the tensile-strain dependence of spin states, $i. e.$ the ratio of the high- and low-spin states, in epitaxial thin films and a bulk crystal of LaCoO$_3$ via resonant inelastic soft x-ray scattering. The tensile-strain as small as 1.0% was found to realize different spin states from that in the bulk.
NiO thin films with various strains were grown on SrTiO3 (STO) and MgO substrates using a pulsed laser deposition technique. The films were characterized using an x-ray diffractometer, atomic force microscopy, and infrared reflectance spectroscopy. The films grown on STO (001) substrate show a compressive in-plane strain which increases as the film thickness is reduced, resulting in an increase of the NiO phonon frequency. On the other hand, a tensile strain was detected in the NiO film grown on MgO (001) substrate which induces a softening of the phonon frequency. Overall, the variation of in-plane strain from -0.36% to +0.48% yields the decrease of the phonon frequency from 409.6 cm-1 to 377.5 cm-1 which occurs due to the ~1% change of the inter-atomic distances. The magnetic exchange -driven phonon splitting Delta(W) in three different sample, with relaxed (i.e. zero) strain, 0.36% compressive and 0.48% tensile strain was measured as a function of temperature. The Delta(W) increases on cooling in NiO relaxed film as in the previously published work on a bulk crystal. The splitting increases on cooling also in 0.48% tensile strained film, but Delta(W) is systematically 3-4 cm-1 smaller than in relaxed film. Since the phonon splitting is proportional to the non-dominant magnetic exchange interaction J1, the reduction of phonon splitting in tensile-strained film was explained by a diminishing J1 with lattice expansion. Increase of Delta(W) on cooling can be also explained by rising of J1 with reduced temperature.
Rare earth free alloys are in focus of permanent magnet research since the accessibility of the elements needed for nowadays conventional magnets is limited. Tetragonally strained iron-cobalt (Fe-Co) has attracted large interest as promising candidate due to theoretical calculations. In experiments, however, the applied strain quickly relaxes with increasing film thickness and hampers stabilization of a strong magnetocrystalline anisotropy. In our study we show that already 2 at% of carbon substantially reduce the lattice relaxation leading to the formation of a spontaneously strained phase with 3 % tetragonal distortion. In these strained (Fe$_{0.4}$Co$_{0.6}$)$_{0.98}$C$_{0.02}$ films, a magnetocrystalline anisotropy above 0.4 MJ/m$^3$ is observed while the large polarization of 2.1 T is maintained. Compared to binary Fe-Co this is a remarkable improvement of the intrinsic magnetic properties. In this paper, we relate our experimental work to theoretical studies of strained Fe-Co-C and find a very good agreement.
Materials with strong electronic correlations host remarkable -- and technologically relevant -- phenomena such as magnetism, superconductivity and metal-insulator transitions. Harnessing and controlling these effects is a major challenge, on which key advances are being made through lattice and strain engineering in thin films and heterostructures, leveraging the complex interplay between electronic and structural degrees of freedom. Here we show that the electronic structure of LaNiO3 can be tuned by means of lattice engineering. We use different substrates to induce compressive and tensile biaxial epitaxial strain in LaNiO3 thin films. Our measurements reveal systematic changes of the optical spectrum as a function of strain and, notably, an increase of the low-frequency free carrier weight as tensile strain is applied. Using density functional theory (DFT) calculations, we show that this apparently counter-intuitive effect is due to a change of orientation of the oxygen octahedra.The calculations also reveal drastic changes of the electronic structure under strain, associated with a Fermi surface Lifshitz transition. We provide an online applet to explore these effects. The experimental value of integrated spectral weight below 2 eV is significantly (up to a factor of 3) smaller than the DFT results, indicating a transfer of spectral weight from the infrared to energies above 2 eV. The suppression of the free carrier weight and the transfer of spectral weight to high energies together indicate a correlation-induced band narrowing and free carrier mass enhancement due to electronic correlations. Our findings provide a promising avenue for the tuning and control of quantum materials employing lattice engineering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا