No Arabic abstract
Drone cell (DC) is an emerging technique to offer flexible and cost-effective wireless connections to collect Internet-of-things (IoT) data in uncovered areas of terrestrial networks. The flying trajectory of DC significantly impacts the data collection performance. However, designing the trajectory is a challenging issue due to the complicated 3D mobility of DC, unique DC-to-ground (D2G) channel features, limited DC-to-BS (D2B) backhaul link quality, etc. In this paper, we propose a 3D DC trajectory design for the DC-assisted IoT data collection where multiple DCs periodically fly over IoT devices and relay the IoT data to the base stations (BSs). The trajectory design is formulated as a mixed integer non-linear programming (MINLP) problem to minimize the average user-to-DC (U2D) pathloss, considering the state-of-the-art practical D2G channel model. We decouple the MINLP problem into multiple quasi-convex or integer linear programming (ILP) sub-problems, which optimizes the user association, user scheduling, horizontal trajectories and DC flying altitudes of DCs, respectively. Then, a 3D multi-DC trajectory design algorithm is developed to solve the MINLP problem, in which the sub-problems are optimized iteratively through the block coordinate descent (BCD) method. Compared with the static DC deployment, the proposed trajectory design can lower the average U2D pathloss by 10-15 dB, and reduce the standard deviation of U2D pathloss by 56%, which indicates the improvements in both link quality and user fairness.
Drone base station (DBS) is a promising technique to extend wireless connections for uncovered users of terrestrial radio access networks (RAN). To improve user fairness and network performance, in this paper, we design 3D trajectories of multiple DBSs in the drone assisted radio access networks (DA-RAN) where DBSs fly over associated areas of interests (AoIs) and relay communications between the base station (BS) and users in AoIs. We formulate the multi-DBS 3D trajectory planning and scheduling as a mixed integer non-linear programming (MINLP) problem with the objective of minimizing the average DBS-to-user (D2U) pathloss. The 3D trajectory variations in both horizontal and vertical directions, as well as the state-of-the-art DBS-related channel models are considered in the formulation. To address the non-convexity and NP-hardness of the MINLP problem, we first decouple it into multiple integer linear programming (ILP) and quasi-convex sub-problems in which AoI association, D2U communication scheduling, horizontal trajectories and flying heights of DBSs are respectively optimized. Then, we design a multi-DBS 3D trajectory planning and scheduling algorithm to solve the sub-problems iteratively based on the block coordinate descent (BCD) method. A k-means-based initial trajectory generation and a search-based start slot scheduling are considered in the proposed algorithm to improve trajectory design performance and ensure inter-DBS distance constraint, respectively. Extensive simulations are conducted to investigate the impacts of DBS quantity, horizontal speed and initial trajectory on the trajectory planning results. Compared with the static DBS deployment, the proposed trajectory planning can achieve 10-15 dB reduction on average D2U pathloss, and reduce the D2U pathloss standard deviation by 68%, which indicate the improvements of network performance and user fairness.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an already existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a sophisticated three-dimensional (3D) environment, where the UAVs trajectory is optimized to efficiently collect data from multiple IoT ground nodes. Unlike existing approaches focusing only on a simplified two-dimensional scenario and the availability of perfect channel state information (CSI), this paper considers a practical 3D urban environment with imperfect CSI, where the UAVs trajectory is designed to minimize data collection completion time subject to practical throughput and flight movement constraints. Specifically, inspired from the state-of-the-art deep reinforcement learning approaches, we leverage the twin-delayed deep deterministic policy gradient (TD3) to design the UAVs trajectory and present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm. In particular, we set an additional information, i.e., the merged pheromone, to represent the state information of UAV and environment as a reference of reward which facilitates the algorithm design. By taking the service statuses of IoT nodes, the UAVs position, and the merged pheromone as input, the proposed algorithm can continuously and adaptively learn how to adjust the UAVs movement strategy. By interacting with the external environment in the corresponding Markov decision process, the proposed algorithm can achieve a near-optimal navigation strategy. Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
In this paper, we propose a novel joint intelligent trajectory design and resource allocation algorithm based on users mobility and their requested services for unmanned aerial vehicles (UAVs) assisted networks, where UAVs act as nodes of a network function virtualization (NFV) enabled network. Our objective is to maximize energy efficiency and minimize the average delay on all services by allocating the limited radio and NFV resources. In addition, due to the traffic conditions and mobility of users, we let some Virtual Network Functions (VNFs) to migrate from their current locations to other locations to satisfy the Quality of Service requirements. We formulate our problem to find near-optimal locations of UAVs, transmit power, subcarrier assignment, placement, and scheduling the requested services functions over the UAVs and perform suitable VNF migration. Then we propose a novel Hierarchical Hybrid Continuous and Discrete Action (HHCDA) deep reinforcement learning method to solve our problem. Finally, the convergence and computational complexity of the proposed algorithm and its performance analyzed for different parameters. Simulation results show that our proposed HHCDA method decreases the request reject rate and average delay by 31.5% and 20% and increases the energy efficiency by 40% compared to DDPG method.
The recent trend towards the high-speed transportation system has spurred the development of high-speed trains (HSTs). However, enabling HST users with seamless wireless connectivity using the roadside units (RSUs) is extremely challenging, mostly due to the lack of line of sight link. To address this issue, we propose a novel framework that uses intelligent reflecting surfaces (IRS)-enabled unmanned aerial vehicles (UAVs) to provide line of sight communication to HST users. First, we formulate the optimization problem where the objective is to maximize the minimum achievable rate of HSTs by jointly optimizing the trajectory of UAV and the phase-shift of IRS. Due to the non-convex nature of the formulated problem, it is decomposed into two subproblems: IRS phase-shift problem and UAV trajectory optimization problem. Next, a Binary Integer Linear Programming (BILP) and a Soft Actor-Critic (SAC) are constructed in order to solve our decomposed problems. Finally, comprehensive numerical results are provided in order to show the effectiveness of our proposed framework.