Do you want to publish a course? Click here

AI-Based and Mobility-Aware Energy Efficient Resource Allocation and Trajectory Design for NFV Enabled Aerial Networks

341   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel joint intelligent trajectory design and resource allocation algorithm based on users mobility and their requested services for unmanned aerial vehicles (UAVs) assisted networks, where UAVs act as nodes of a network function virtualization (NFV) enabled network. Our objective is to maximize energy efficiency and minimize the average delay on all services by allocating the limited radio and NFV resources. In addition, due to the traffic conditions and mobility of users, we let some Virtual Network Functions (VNFs) to migrate from their current locations to other locations to satisfy the Quality of Service requirements. We formulate our problem to find near-optimal locations of UAVs, transmit power, subcarrier assignment, placement, and scheduling the requested services functions over the UAVs and perform suitable VNF migration. Then we propose a novel Hierarchical Hybrid Continuous and Discrete Action (HHCDA) deep reinforcement learning method to solve our problem. Finally, the convergence and computational complexity of the proposed algorithm and its performance analyzed for different parameters. Simulation results show that our proposed HHCDA method decreases the request reject rate and average delay by 31.5% and 20% and increases the energy efficiency by 40% compared to DDPG method.



rate research

Read More

With the rapid growth of Internet of Things (IoT) devices, the next generation mobile networks demand for more operating frequency bands. By leveraging the underutilized radio spectrum, the cognitive radio (CR) technology is considered as a promising solution for spectrum scarcity problem of IoT applications. In parallel with the development of CR techniques, Wireless Energy Harvesting (WEH) is considered as one of the emerging technologies to eliminate the need of recharging or replacing the batteries for IoT and CR networks. To this end, we propose to utilize WEH for CR networks in which the CR devices are not only capable of sensing the available radio frequencies in a collaborative manner but also harvesting the wireless energy transferred by an Access Point (AP). More importantly, we design an optimization framework that captures a fundamental tradeoff between energy efficiency (EE) and spectral efficiency (SE) of the network. In particular, we formulate a Mixed Integer Nonlinear Programming (MINLP) problem that maximizes EE while taking into consideration of users buffer occupancy, data rate fairness, energy causality constraints and interference constraints. We further prove that the proposed optimization framework is an NP-Hard problem. Thus, we propose a low complex heuristic algorithm, called INSTANT, to solve the resource allocation and energy harvesting optimization problem. The proposed algorithm is shown to be capable of achieving near optimal solution with high accuracy while having polynomial complexity. The efficiency of our proposal is validated through well designed simulations.
85 - Han Hu , Weiwei Song , Qun Wang 2021
Mobile edge computing (MEC)-enabled Internet of Things (IoT) networks have been deemed a promising paradigm to support massive energy-constrained and computation-limited IoT devices. IoT with mobility has found tremendous new services in the 5G era and the forthcoming 6G eras such as autonomous driving and vehicular communications. However, mobility of IoT devices has not been studied in the sufficient level in the existing works. In this paper, the offloading decision and resource allocation problem is studied with mobility consideration. The long-term average sum service cost of all the mobile IoT devices (MIDs) is minimized by jointly optimizing the CPU-cycle frequencies, the transmit power, and the user association vector of MIDs. An online mobility-aware offloading and resource allocation (OMORA) algorithm is proposed based on Lyapunov optimization and Semi-Definite Programming (SDP). Simulation results demonstrate that our proposed scheme can balance the system service cost and the delay performance, and outperforms other offloading benchmark methods in terms of the system service cost.
160 - Mushu Li , Nan Cheng , Jie Gao 2020
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the proposed approach for maximizing the energy efficiency of UAV.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an already existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.
In this paper, we propose a joint radio and core resource allocation framework for NFV-enabled networks. In the proposed system model, the goal is to maximize energy efficiency (EE), by guaranteeing end-to-end (E2E) quality of service (QoS) for different service types. To this end, we formulate an optimization problem in which power and spectrum resources are allocated in the radio part. In the core part, the chaining, placement, and scheduling of functions are performed to ensure the QoS of all users. This joint optimization problem is modeled as a Markov decision process (MDP), considering time-varying characteristics of the available resources and wireless channels. A soft actor-critic deep reinforcement learning (SAC-DRL) algorithm based on the maximum entropy framework is subsequently utilized to solve the above MDP. Numerical results reveal that the proposed joint approach based on the SAC-DRL algorithm could significantly reduce energy consumption compared to the case in which R-RA and NFV-RA problems are optimized separately.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا