Do you want to publish a course? Click here

Investigation of Practical Aspects of Single Channel Speech Separation for ASR

125   0   0.0 ( 0 )
 Added by Jian Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Speech separation has been successfully applied as a frontend processing module of conversation transcription systems thanks to its ability to handle overlapped speech and its flexibility to combine with downstream tasks such as automatic speech recognition (ASR). However, a speech separation model often introduces target speech distortion, resulting in a sub-optimum word error rate (WER). In this paper, we describe our efforts to improve the performance of a single channel speech separation system. Specifically, we investigate a two-stage training scheme that firstly applies a feature level optimization criterion for pretraining, followed by an ASR-oriented optimization criterion using an end-to-end (E2E) speech recognition model. Meanwhile, to keep the model light-weight, we introduce a modified teacher-student learning technique for model compression. By combining those approaches, we achieve a absolute average WER improvement of 2.70% and 0.77% using models with less than 10M parameters compared with the previous state-of-the-art results on the LibriCSS dataset for utterance-wise evaluation and continuous evaluation, respectively

rate research

Read More

Target speech separation refers to extracting a target speakers voice from an overlapped audio of simultaneous talkers. Previously the use of visual modality for target speech separation has demonstrated great potentials. This work proposes a general multi-modal framework for target speech separation by utilizing all the available information of the target speaker, including his/her spatial location, voice characteristics and lip movements. Also, under this framework, we investigate on the fusion methods for multi-modal joint modeling. A factorized attention-based fusion method is proposed to aggregate the high-level semantic information of multi-modalities at embedding level. This method firstly factorizes the mixture audio into a set of acoustic subspaces, then leverages the targets information from other modalities to enhance these subspace acoustic embeddings with a learnable attention scheme. To validate the robustness of proposed multi-modal separation model in practical scenarios, the system was evaluated under the condition that one of the modalities is temporarily missing, invalid or corrupted. Experiments are conducted on a large-scale audio-visual dataset collected from YouTube (to be released) that spatialized by simulated room impulse responses (RIRs). Experiment results illustrate that our proposed multi-modal framework significantly outperforms single-modal and bi-modal speech separation approaches, while can still support real-time processing.
113 - Jian Wu , Zhuo Chen , Jinyu Li 2020
Multi-speaker speech recognition has been one of the keychallenges in conversation transcription as it breaks the singleactive speaker assumption employed by most state-of-the-artspeech recognition systems. Speech separation is consideredas a remedy to this problem. Previously, we introduced a sys-tem, calledunmixing,fixed-beamformerandextraction(UFE),that was shown to be effective in addressing the speech over-lap problem in conversation transcription. With UFE, an inputmixed signal is processed by fixed beamformers, followed by aneural network post filtering. Although promising results wereobtained, the system contains multiple individually developedmodules, leading potentially sub-optimum performance. In thiswork, we introduce an end-to-end modeling version of UFE. Toenable gradient propagation all the way, an attentional selectionmodule is proposed, where an attentional weight is learnt foreach beamformer and spatial feature sampled over space. Ex-perimental results show that the proposed system achieves com-parable performance in an offline evaluation with the originalseparate processing-based pipeline, while producing remark-able improvements in an online evaluation.
Many applications of single channel source separation (SCSS) including automatic speech recognition (ASR), hearing aids etc. require an estimation of only one source from a mixture of many sources. Treating this special case as a regular SCSS problem where in all constituent sources are given equal priority in terms of reconstruction may result in a suboptimal separation performance. In this paper, we tackle the one source separation problem by suitably modifying the orthodox SCSS framework and focus only on one source at a time. The proposed approach is a generic framework that can be applied to any existing SCSS algorithm, improves performance, and scales well when there are more than two sources in the mixture unlike most existing SCSS methods. Additionally, existing SCSS algorithms rely on fine hyper-parameter tuning hence making them difficult to use in practice. Our framework takes a step towards automatic tuning of the hyper-parameters thereby making our method better suited for the mixture to be separated and thus practically more useful. We test our framework on a neural network based algorithm and the results show an improved performance in terms of SDR and SAR.
Hand-crafted spatial features (e.g., inter-channel phase difference, IPD) play a fundamental role in recent deep learning based multi-channel speech separation (MCSS) methods. However, these manually designed spatial features are hard to incorporate into the end-to-end optimized MCSS framework. In this work, we propose an integrated architecture for learning spatial features directly from the multi-channel speech waveforms within an end-to-end speech separation framework. In this architecture, time-domain filters spanning signal channels are trained to perform adaptive spatial filtering. These filters are implemented by a 2d convolution (conv2d) layer and their parameters are optimized using a speech separation objective function in a purely data-driven fashion. Furthermore, inspired by the IPD formulation, we design a conv2d kernel to compute the inter-channel convolution differences (ICDs), which are expected to provide the spatial cues that help to distinguish the directional sources. Evaluation results on simulated multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed ICD based MCSS model improves the overall signal-to-distortion ratio by 10.4% over the IPD based MCSS model.
The most recent deep neural network (DNN) models exhibit impressive denoising performance in the time-frequency (T-F) magnitude domain. However, the phase is also a critical component of the speech signal that is easily overlooked. In this paper, we propose a multi-branch dilated convolutional network (DCN) to simultaneously enhance the magnitude and phase of noisy speech. A causal and robust monaural speech enhancement system is achieved based on the multi-objective learning framework of the complex spectrum and the ideal ratio mask (IRM) targets. In the process of joint learning, the intermediate estimation of IRM targets is used as a way of generating feature attention factors to realize the information interaction between the two targets. Moreover, the proposed multi-scale dilated convolution enables the DCN model to have a more efficient temporal modeling capability. Experimental results show that compared with other state-of-the-art models, this model achieves better speech quality and intelligibility with less computation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا