Do you want to publish a course? Click here

Spontaneous topological transitions in a honeycomb lattice of exciton-polariton condensates due to spin bifurcations

145   0   0.0 ( 0 )
 Added by Helgi Sigurdsson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically explore nonresonantly pumped polaritonic graphene, a system consisting of a honeycomb lattice of micropillars in the regime of strong light-matter coupling. We demonstrate that, depending on the parameters of the structure, such as intensity of the pump and coupling strength between the pillars, the system shows rich variety of macroscopic ordering, including analogs of ferromagnetic, antiferromagnetic, and resonant valence bond phases. Transitions between these phases are associated with dramatic reshaping of the spectrum of the system connected with spontaneous appearance of topological order.



rate research

Read More

We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and randomly adopts one of two elliptically polarized (up to 95% circularly-polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100-fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.
We present a scheme of interaction-induced topological bandstructures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under non-resonant pumping, we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under resonant coherent pumping, we find that it is also possible to engineer a topological dispersion that is linear in wavevector -- a property associated with polariton superfluidity.
Dirac particles, massless relativistic entities, obey linear energy dispersions and hold important implication in particle physics. Recent discovery of Dirac fermions in condensed matter systems including graphene and topological insulators raises great interests to explore relativistic properties associated with Dirac physics in solid-state materials. In addition, there are stimulating research activities to engineer Dirac paricles to eludicte their physical properties in a controllable setting. One of the successful platforms is the ultracold atom-optical lattice system, whose dynamics can be manipulated in a clean environment. A microcavity exciton-polariton-lattice system provides an alternative route with an advantage of forming high-orbital condensation in non-equilibrium conditions, which enables to explore novel quantum orbital order in two dimensions. Here we directly map the liner dispersions near the Dirac points, the vertices of the first hexagonal Brillouin zone from exciton-polariton condensates trapped in a triangular lattice. The associated velocity values are ~ 0.9 - 2*10^8 cm/s, which are consistent with the theoretical estimate 1*10^8 cm/s with a 2 mu m-lattice constant. We envision that the exciton-polariton condensates in lattices would be a promising solid-state platform, where the system order parameter can be accesses in both real and momentum spaces. We furthermore explore unique phenomena revealing quantum bose nature such as superfluidity and distinct features analogous to quantum Hall effect pertinent to time-reversal symmetry.
We demonstrate that multiply-coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed 4-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger 8 condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable non-equilibrium spin lattice.
Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermions interact with effective non-Abelian gauge fields. We show how in this setup a variety of topological phase transitions occur, which arise due to massless fermion pair production events, as well as pair annihilation events of two kinds: spontaneous and strongly-interacting induced. Moreover, such phase transitions can be controlled and characterized in optical lattice experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا