We demonstrate that multiply-coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed 4-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger 8 condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable non-equilibrium spin lattice.
We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and randomly adopts one of two elliptically polarized (up to 95% circularly-polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100-fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.
We investigate an optically trapped exciton-polariton condensate and observe temporal coherence beyond 1~ns duration. Due to the reduction of the spatial overlap with the thermal reservoir of excitons, the coherence time of the trapped condensate is more than an order of magnitude longer than that of an untrapped condensate. This ultralong coherence enables high precision spectroscopy of the trapped condensate, and we observe periodic beats of the field correlation function due to a fine energy splitting of two polarization modes of the condensate. Our results are important for realizing polariton simulators with spinor condensates in lattice potentials.
We theoretically explore nonresonantly pumped polaritonic graphene, a system consisting of a honeycomb lattice of micropillars in the regime of strong light-matter coupling. We demonstrate that, depending on the parameters of the structure, such as intensity of the pump and coupling strength between the pillars, the system shows rich variety of macroscopic ordering, including analogs of ferromagnetic, antiferromagnetic, and resonant valence bond phases. Transitions between these phases are associated with dramatic reshaping of the spectrum of the system connected with spontaneous appearance of topological order.
We study phase transitions in a lattice of square-arranged driven-dissipative polariton condensates with nearest-neighbour coupling. Simulating the polarization (spin) dynamics of the polariton lattice, we observe regions of qualitatively different steady-state behaviour which can be identified in time-integrated measurements. The transition between these regions resemble phase transitions ubiquitous in statistical physics, but have inherently non-equilibrium nature and cannot be classified in the conventional way. To overcome this challenge, we use machine learning methods to determine the boundaries separating the regions. We use unsupervised data mining techniques to sketch the regions of phase transition. We then apply learning by confusion, a neural network-based method for learning labels in the dataset, and extract the polaritonic phase diagram. Our work takes a step towards AI-enabled studies of polaritonic systems.
The phase and the frequency of an exciton polariton condensate excited by a nonresonant pump can be efficiently manipulated by an external coherent light. Being tuned close to the resonance with the condensate eigenfrequency, the external laser light imposes its frequency to the condensate and locks its phase, thereby manifesting a synchronization effect. The conditions of formation of the phase synchronized regime are determined. The synchronization of a couple of closely spaced polariton condensates by a spatially uniform coherent light is examined. At the moderate strength of the coherent driving the synchronization is accompanied by the appearance of symmetry-breaking states of the polariton dyad, while these states are superseded by the symmetric state at the high-intensity driving. By employing a zero-dimensional model of coupled dissipative oscillators with both dissipative and conservative coupling, we study the bifurcation scenario of the symmetry-breaking state formation.