Do you want to publish a course? Click here

One-bit LFMCW Radar: Spectrum Analysis and Target Detection

297   0   0.0 ( 0 )
 Added by Jiang Zhu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

One-bit radar, performing signal sampling and quantization by a one-bit ADC, is a promising technology for many civilian applications due to its low-cost and low-power consumptions. In this paper, problems encountered by one-bit LFMCW radar are studied and a two-stage target detection method termed as the dimension-reduced generalized approximate message passing (DR-GAMP) approach is proposed. Firstly, the spectrum of one-bit quantized signals in a scenario with multiple targets is analyzed. It is indicated that high-order harmonics may result in false alarms (FAs) and cannot be neglected. Secondly, based on the spectrum analysis, the DR-GAMP approach is proposed to carry out target detection. Specifically, linear preprocessing methods and target predetection are firstly adopted to perform the dimension reduction, and then, the GAMP algorithm is utilized to suppress high-order harmonics and recover true targets. Finally, numerical simulations are conducted to evaluate the performance of one-bit LFMCW radar under typical parameters. It is shown that compared to the conventional radar applying linear processing methods, one-bit LFMCW radar has about $1.3$ dB performance gain when the input signal-to-noise ratios (SNRs) of targets are low. In the presence of a strong target, it has about $1.0$ dB performance loss.



rate research

Read More

This work focuses on the reconstruction of sparse signals from their 1-bit measurements. The context is the one of 1-bit compressive sensing where the measurements amount to quantizing (dithered) random projections. Our main contribution shows that, in addition to the measurement process, we can additionally reconstruct the signal with a binarization of the sensing matrix. This binary representation of both the measurements and sensing matrix can dramatically simplify the hardware architecture on embedded systems, enabling cheaper and more power efficient alternatives. Within this framework, given a sensing matrix respecting the restricted isometry property (RIP), we prove that for any sparse signal the quantized projected back-projection (QPBP) algorithm achieves a reconstruction error decaying like O(m-1/2)when the number of measurements m increases. Simulations highlight the practicality of the developed scheme for different sensing scenarios, including random partial Fourier sensing.
Information divergences are commonly used to measure the dissimilarity of two elements on a statistical manifold. Differentiable manifolds endowed with different divergences may possess different geometric properties, which can result in totally different performances in many practical applications. In this paper, we propose a total Bregman divergence-based matrix information geometry (TBD-MIG) detector and apply it to detect targets emerged into nonhomogeneous clutter. In particular, each sample data is assumed to be modeled as a Hermitian positive-definite (HPD) matrix and the clutter covariance matrix is estimated by the TBD mean of a set of secondary HPD matrices. We then reformulate the problem of signal detection as discriminating two points on the HPD matrix manifold. Three TBD-MIG detectors, referred to as the total square loss, the total log-determinant and the total von Neumann MIG detectors, are proposed, and they can achieve great performances due to their power of discrimination and robustness to interferences. Simulations show the advantage of the proposed TBD-MIG detectors in comparison with the geometric detector using an affine invariant Riemannian metric as well as the adaptive matched filter in nonhomogeneous clutter.
In this paper, we reconsider the problem of detecting a matrix-valued rank-one signal in unknown Gaussian noise, which was previously addressed for the case of sufficient training data. We relax the above assumption to the case of limited training data. We re-derive the corresponding generalized likelihood ratio test (GLRT) and two-step GLRT (2S--GLRT) based on certain unitary transformation on the test data. It is shown that the re-derived detectors can work with low sample support. Moreover, in sample-abundant environments the re-derived GLRT is the same as the previously proposed GLRT and the re-derived 2S--GLRT has better detection performance than the previously proposed 2S--GLRT. Numerical examples are provided to demonstrate the effectiveness of the re-derived detectors.
Dual-Functional Radar-Communication (DFRC) system is an essential and promising technique for beyond 5G. In this work, we propose a powerful and unified multi-antenna DFRC transmission framework, where an additional radar sequence is transmitted apart from communication streams to enhance radar beampattern matching capability, and Rate-Splitting Multiple Access (RSMA) is adopted to better manage the interference. RSMA relies on multi-antenna Rate-Splitting (RS) with Successive Interference Cancellation (SIC) receivers, and the split and encoding of messages into common and private streams. We design the message split and the precoders of the radar sequence and communication streams to jointly maximize the Weighted Sum Rate (WSR) and minimize the radar beampattern approximation Mean Square Error (MSE) subject to the per antenna power constraint. An iterative algorithm based on Alternating Direction Method of Multipliers (ADMM) is developed to solve the problem. Numerical results first show that RSMA-assisted DFRC achieves a better tradeoff between WSR and beampattern approximation than Space-Division Multiple Access (SDMA)-assisted DFRC with or without radar sequence, and other simpler radar-communication strategies using orthogonal resources. We also show that the RSMA-assisted DFRC frameworks with and without radar sequence achieve the same tradeoff performance. This is because that the common stream is better exploited in the proposed framework. The common stream of RSMA fulfils the triple function of managing interference among communication users, managing interference between communication and radar, and beampattern approximation. Therefore, by enabling RSMA in DFRC, the system performance is enhanced while the system architecture is simplified since there is no need to use additional radar sequence and SIC. We conclude that RSMA is a more powerful multiple access for DFRC.
We consider the problem of range-Doppler imaging using one-bit automotive LFMCW1 or PMCW radar that utilizes one-bit ADC sampling with time-varying thresholds at the receiver. The one-bit sampling technique can significantly reduce the cost as well as the power consumption of automotive radar systems. We formulate the one-bit LFMCW/PMCW radar rangeDoppler imaging problem as one-bit sparse parameter estimation. The recently proposed hyperparameter-free (and hence user friendly) weighted SPICE algorithms, including SPICE, LIKES, SLIM and IAA, achieve excellent parameter estimation performance for data sampled with high precision. However, these algorithms cannot be used directly for one-bit data. In this paper we first present a regularized minimization algorithm, referred to as 1bSLIM, for accurate range-Doppler imaging using onebit radar systems. Then, we describe how to extend the SPICE, LIKES and IAA algorithms to the one-bit data case, and refer to these extensions as 1bSPICE, 1bLIKES and 1bIAA. These onebit hyperparameter-free algorithms are unified within the one-bit weighted SPICE framework. Moreover, efficient implementations of the aforementioned algorithms are investigated that rely heavily on the use of FFTs. Finally, both simulated and experimental examples are provided to demonstrate the effectiveness of the proposed algorithms for range-Doppler imaging using one-bit automotive radar systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا