Do you want to publish a course? Click here

Moderate hybridization effects revealed by ARPES in heavy-fermion Ce2IrIn8

282   0   0.0 ( 0 )
 Added by Haijiang Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We utilized high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) to study the band structure and hybridization effect of the heavy-fermion compound Ce2IrIn8. We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature Tcoh ~ 40 K, which characterizes the electrical resistance maximum indicating the onset temperature of hybridization. However, the Fermi vector kF and the Fermi surface (FS) volume have little change around Tcoh, challenging the widely believed evolution from a high-temperature small FS to a low-temperature large FS. Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory (DFT+DMFT) calculations.



rate research

Read More

A Kondo lattice of strongly interacting f-electrons immersed in a sea of conduction electrons remains one of the unsolved problems in condensed matter physics. The problem concerns localized f-electrons at high temperatures which evolve into hybridized heavy quasi-particles at low temperatures, resulting in the appearance of a hybridization gap. Here, we unveil the presence of hybridization gap in Ce2RhIn8 and find the surprising result that the temperature range at which this gap becomes visible by angle-resolved photoemission spectroscopy is nearly an order of magnitude lower than the temperature range where the magnetic scattering becomes larger than the phonon scattering, as observed in the electrical resistivity measurements. Furthermore the spectral gap appears at temperature scales nearly an order of magnitude higher than the coherent temperature. We further show that when replacing In by Cd to tune the local density of states at the Ce3+ site, there is a strong reduction of the hybridization strength, which in turn leads to the suppression of the hybridization gap at low temperatures.
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CcmMnIn3m+2n (with M =Co, Rh, Ir, and Pt, m=l, 2, n=0 - 2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Three heavy quasiparticle bands f^0, f^1_7/2 and f^1_5/2 are observed in all compounds, but their intensities and energy locations vary greatly with materials. The strong f^0 states imply that the localized electron behavior dominates the Ce 4f states. The Ce 4f electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerant. Our quantitative comparison reveals that the f^1_5/2 / f^0 intensity ratio is more suitable to reflect the 4f-state hybridization strength.
We investigate the quasiparticle dynamics in the prototype heavy fermion CeCoIn$_5$ using ultrafast optical pump-probe spectroscopy. Our results indicate that this material system undergoes hybridization fluctuations before full establishment of the heavy electron coherence, as the temperature decreases from $sim$120 K ($T^dagger$) to $sim$55 K ($T^*$ ). We reveal that the observed anomalous phonon softening and damping reduction below $T^*$ are directly associated with opening of an indirect hybridization gap. We also discover a distinct collective mode with an energy of $sim$8 meV, which may be the experimental evidence of the predicted unconventional density wave. Our observations provide critical informations for understanding the hybridization dynamics in heavy fermion materials.
Replacing a magnetic atom by a spinless atom in a heavy fermion compound generates a quantum state often referred to as a Kondo-hole. No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact (Lawrence JM, et al. (1996) Kondo hole behavior in Ce0. 97La0. 03Pd3. Phys Rev B 53:12559-12562; Bauer ED, et al. (2011) Electronic inhomogeneity in a Kondo lattice. Proc Natl Acad Sci. 108:6857-6861) on the hybridization process between conduction and localized electrons which generates the heavy fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless Thorium atoms for magnetic Uranium atoms in the heavy-fermion system URu2Si2. At each Thorium atom, an electronic bound state is observed. Moreover, surrounding each Thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes (Figgins J, Morr DK (2011) Defects in heavy-fermion materials: unveiling strong correlations in real space. Phys Rev Lett 107:066401). Then, by introducing the hybridization gapmap technique to heavy fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping.
We report an angle-resolved photoemission (ARPES) study of $beta$-YbAlB$_4$, which is known to harbor unconventional quantum criticality (QC) without any tuning. We directly observe a quasiparticle peak (QP), emerging from hybridization, characterized by a binding energy and an onset of coherence both at about 4 meV. This value conforms with a previously observed reduced Kondo scale at about 40 K. Consistency with an earlier study of carriers in $beta$-YbAlB$_4$ via the Hall effect strongly suggests that this QP is responsible for the QC in $beta$-YbAlB$_4$. A comparison with the sister polymorph $alpha$-YbAlB$_4$, which is not quantum critical at ambient pressure, further supports this result. Indeed, within the limitation of our instrumental resolution, our ARPES measurements do not show tangible sign of hybridization in this locally isomorphic system, while the conduction band we observe is essentially the same as in $beta$-YbAlB$_4$. We therefore claim that we identified by ARPES the carriers responsible for the QC in $beta$-YbAlB$_4$. The observed dispersion and the underlying hybridization of this QP are discussed in the context of existing theoretical models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا