No Arabic abstract
A Kondo lattice of strongly interacting f-electrons immersed in a sea of conduction electrons remains one of the unsolved problems in condensed matter physics. The problem concerns localized f-electrons at high temperatures which evolve into hybridized heavy quasi-particles at low temperatures, resulting in the appearance of a hybridization gap. Here, we unveil the presence of hybridization gap in Ce2RhIn8 and find the surprising result that the temperature range at which this gap becomes visible by angle-resolved photoemission spectroscopy is nearly an order of magnitude lower than the temperature range where the magnetic scattering becomes larger than the phonon scattering, as observed in the electrical resistivity measurements. Furthermore the spectral gap appears at temperature scales nearly an order of magnitude higher than the coherent temperature. We further show that when replacing In by Cd to tune the local density of states at the Ce3+ site, there is a strong reduction of the hybridization strength, which in turn leads to the suppression of the hybridization gap at low temperatures.
We present results from point-contact spectroscopy of the antiferromagnetic heavy-fermion superconductor UPd$_2$Al$_3$: conductance spectra are taken from single crystals with two major surface orientations as a function of temperature and magnetic field, and analyzed using a theory of co-tunneling into an Anderson lattice. Spectroscopic signatures are clearly identified including the distinct asymmetric double-peak structure arising from the opening of a hybridization gap when a coherent heavy Fermi liquid is formed. Both the hybridization gap, found to be 7.2 $pm$ 0.3 meV at 4 K, and the conductance enhancement above a flat background decrease upon increasing temperature. While the hybridization gap is extrapolated to remain finite up to $sim$28 K, close to the temperature around which the magnetic susceptibility displays a broad peak, the conductance enhancement vanishes at $sim$18 K, slightly above the antiferromagnetic transition temperature ($T_textrm{N}$ $approx$ 14 K). This rapid decrease of the conductance enhancement is understood as a consequence of the junction drifting away from the ballistic regime due to increased scattering off magnons associated with the localized U 5$f$ electrons. This shows that while the hybridization gap opening is not directly associated with the antiferromagnetic ordering, its visibility in the conductance is greatly affected by the temperature-dependent magnetic excitations. Our findings are not only consistent with the 5$f$ dual-nature picture in the literature but also shed new light on the interplay between the itinerant and localized electrons in UPd$_2$Al$_3$.
The order parameter and pairing mechanism for superconductivity in heavy fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultra-low temperatures can yield important information about the superconducting order parameter and the gap structure. Here, we study the first heavy fermion superconductor, CeCu_2Si_2. Our data show the superconducting gap which is not fully formed and exhibits features that point to a multi-gap order parameter. Spatial mapping of the zero bias conductance in magnetic field reveals the vortex lattice, which allows us to unequivocally link the observed conductance gap to superconductivity in CeCu_2Si_2. The vortex lattice is found to be predominantly triangular with distortions at fields close to sim 0.7 H_{c2}.
Some recent neutron scattering works on CeRhIn5 and Ce2RhIn8, together with related resistivity and specific heat measurements, are summarized. In spite of its layered crystal structure, CeRhIn5 is shown to be 3-dimensional both magnetically and in transport. We also find that the Fisher-Langer behavior is closely followed in CeRhIn5. This may circumvent the Kondo lattice model and support applying established Fermi-liquid superconductivity theory to heavy fermion superconductors.
We report angle-resolved photoemission spectroscopy and first-principles numerical calculations for the band structure evolution of the 3d heavy-fermion compound CaCu3Ru4O12. Below 200 K, we observed an emergent hybridization gap between the Cu 3d electron-like band and the Ru 4d hole-like band and the resulting flat band features near the Fermi energy centered around the Brillouin zone corner. Our results confirm the non-Kondo nature of CaCu3Ru4O12, in which the Cu 3dxy electrons are less correlated and not in the Kondo limit. Comparison between theory and experiment also suggests that other mechanism such as nonlocal interactions or spin fluctuations beyond the local dynamical mean-field theory may be needed in order to give a quantitative explanation of the peculiar properties in this material.
Tuning of the electronic properties of heavy fermion compounds by chemical substitutions provides excellent opportunities to further understand the physics of hybridized ions in crystal lattices. Here we present an investigation on the effects of Cd doping in flux-grown single crystals of the complex intermetallic cage compound YbFe$_{2}$Zn$_{20}$, that has been described as a heavy fermion with Sommerfeld coefficient of 535 mJ/mol.K$^{2}$. Substitution of Cd for Zn disturbs the system by expanding the unit cell and, in this case, the size of the Zn cages that surround Yb and Fe. With increasing amount of Cd, the hybridization between Yb $4f$ electrons and the conduction electrons is weakened, as evidenced by a decrease in the Sommerfeld coefficient, which should be accompanied by a valence shift of the Yb$^{3+}$ due to the negative chemical pressure effect. This scenario is also supported by the low temperature dc-magnetic susceptibility, that is gradually suppressed and evidences an increment of the Kondo temperature, based on a shift to higher temperatures of the characteristic broad susceptibility peak. Furthermore, the DC resistivity decreases with the isoelectronic Cd substitution for Zn, contrary to the expectation for an increasingly disordered system, and implying that the valence shift is not related to charge carrier doping. The combined results demonstrate excellent complementarity between positive physical pressure and negative chemical pressure, and point to a rich playground for exploring the physics and chemistry of strongly correlated electron systems in the general family of Zn$_{20}$ compounds, despite their structural complexity.