Do you want to publish a course? Click here

Hybridization dynamics in CeCoIn5 revealed by ultrafast optical spectroscopy

97   0   0.0 ( 0 )
 Added by Jingbo Qi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the quasiparticle dynamics in the prototype heavy fermion CeCoIn$_5$ using ultrafast optical pump-probe spectroscopy. Our results indicate that this material system undergoes hybridization fluctuations before full establishment of the heavy electron coherence, as the temperature decreases from $sim$120 K ($T^dagger$) to $sim$55 K ($T^*$ ). We reveal that the observed anomalous phonon softening and damping reduction below $T^*$ are directly associated with opening of an indirect hybridization gap. We also discover a distinct collective mode with an energy of $sim$8 meV, which may be the experimental evidence of the predicted unconventional density wave. Our observations provide critical informations for understanding the hybridization dynamics in heavy fermion materials.



rate research

Read More

We report the ultrafast optical pump-probe spectroscopy measurements on the recently discovered quantum critical ferromagnet CeRh$_6$Ge$_4$. Our experimental results reveal the two-stage development of the hybridization between localized $f$ moments and conduction electrons with lowering temperature, as evidenced by (1) the presence of hybridization fluctuation for temperatures from $sim$85 K ($T^*$) to $sim$140 K ($T^dagger$), and (2) the emergence of collective hybridization below the coherence temperature, $T^*$, marked by the opening of an indirect gap of 2$Delta$ $approx$12 meV. We also observe three coherent phonon modes being softened anomalously below $T^*$, reflecting directly their coupling with the emergent coherent heavy electrons. Our findings establish the universal nature of the hybridization process in different heavy fermion systems.
In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap, E$_{g}$, resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation dynamics in a prototype Kondo insulator YbB${}_{12}$ is studied over large range of temperatures and over three orders of magnitude. We utilize the intrinsic non-linearity of dynamics to quantitatively determine microscopic parameters, such as electron-hole recombination rate. The extracted value reveals that hybridization is accompanied by a strong charge transfer from localized 4f-levels. The results imply the presence of a hybridization gap up to temperatures of the order of E$_{g}$/k$_{B}approx200$ K, which is extremely robust against electronic excitation. Finally, below 20 K the data reveal changes in the low energy electronic structure, attributed to short-range antiferromagnetic correlations between the localized levels.
101 - M. Horio , K. P. Kramer , Q. Wang 2020
We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_4$ (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy and the Fermi-liquid cut-off energy scale, we find -- in contrast to hole-doped cuprates -- a momentum isotropic and comparatively weak electron correlation in PLCCO. Yet, the self-energies extracted from multiple oxide systems combine to demonstrate a logarithmic divergent relation between the quasiparticle scattering rate and mass. This constitutes a spectroscopic version of the Kadowaki-Woods relation with an important merit -- the demonstration of Fermi liquid quasiparticle lifetime and mass being set by a single energy scale.
Recently, the switching between the different charge-ordered phases of 1T-TaS2 has been probed by ultrafast techniques, revealing unexpected phenomena such as hidden metastable states and peculiar photoexcited charge patterns. Here, we apply broadband pump-probe spectroscopy with varying excitation energy to study the ultrafast optical properties of 1T-TaS2 in the visible regime. By scanning the excitation energy in the near-IR region we unravel the coupling between different charge excitations and the low-lying charge-density wave state. We find that the amplitude mode of the charge-density wave exhibits strong coupling to a long-lived doublon state that is photoinduced in the center of the star-shaped charge-ordered Ta clusters by the near-IR optical excitation.
Electrons in correlated insulators are prevented from conducting by Coulomb repulsion between them. When an insulator-to-metal transition is induced in a correlated insulator by doping or heating, the resulting conducting state can be radically different from that characterized by free electrons in conventional metals. We report on the electronic properties of a prototypical correlated insulator vanadium dioxide (VO2) in which the metallic state can be induced by increasing temperature. Scanning near-field infrared microscopy allows us to directly image nano-scale metallic puddles that appear at the onset of the insulator-to-metal transition. In combination with far-field infrared spectroscopy, the data reveal the Mott transition with divergent quasiparticle mass in the metallic puddles. The experimental approach employed here sets the stage for investigations of charge dynamics on the nanoscale in other inhomogeneous correlated electron systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا