Do you want to publish a course? Click here

Information search in a professional context - exploring a collection of professional search tasks

101   0   0.0 ( 0 )
 Added by Suzan Verberne
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Search conducted in a work context is an everyday activity that has been around since long before the Web was invented, yet we still seem to understand little about its general characteristics. With this paper we aim to contribute to a better understanding of this large but rather multi-faceted area of `professional search. Unlike task-based studies that aim at measuring the effectiveness of search methods, we chose to take a step back by conducting a survey among professional searchers to understand their typical search tasks. By doing so we offer complementary insights into the subject area. We asked our respondents to provide actual search tasks they have worked on, information about how these were conducted and details on how successful they eventually were. We then manually coded the collection of 56 search tasks with task characteristics and relevance criteria, and used the coded dataset for exploration purposes. Despite the relatively small scale of this study, our data provides enough evidence that professional search is indeed very different from Web search in many key respects and that this is a field that offers many avenues for future research.



rate research

Read More

Knowledge workers (such as healthcare information professionals, patent agents and recruitment professionals) undertake work tasks where search forms a core part of their duties. In these instances, the search task is often complex and time-consuming and requires specialist expert knowledge to formulate accurate search strategies. Interactive features such as query expansion can play a key role in supporting these tasks. However, generating query suggestions within a professional search context requires that consideration be given to the specialist, structured nature of the search strategies they employ. In this paper, we investigate a variety of query expansion methods applied to a collection of Boolean search strategies used in a variety of real-world professional search tasks. The results demonstrate the utility of context-free distributional language models and the value of using linguistic cues such as ngram order to optimise the balance between precision and recall.
In product search, users tend to browse results on multiple search result pages (SERPs) (e.g., for queries on clothing and shoes) before deciding which item to purchase. Users clicks can be considered as implicit feedback which indicates their preferences and used to re-rank subsequent SERPs. Relevance feedback (RF) techniques are usually involved to deal with such scenarios. However, these methods are designed for document retrieval, where relevance is the most important criterion. In contrast, product search engines need to retrieve items that are not only relevant but also satisfactory in terms of customers preferences. Personalization based on users purchase history has been shown to be effective in product search. However, this method captures users long-term interest, which does not always align with their short-term interest, and does not benefit customers with little or no purchase history. In this paper, we study RF techniques based on both long-term and short-term context dependencies in multi-page product search. We also propose an end-to-end context-aware embedding model which can capture both types of context. Our experimental results show that short-term context leads to much better performance compared with long-term and no context. Moreover, our proposed model is more effective than state-of-art word-based RF models.
In Interactive Information Retrieval (IIR) experiments the users gaze motion on web pages is often recorded with eye tracking. The data is used to analyze gaze behavior or to identify Areas of Interest (AOI) the user has looked at. So far, tools for analyzing eye tracking data have certain limitations in supporting the analysis of gaze behavior in IIR experiments. Experiments often consist of a huge number of different visited web pages. In existing analysis tools the data can only be analyzed in videos or images and AOIs for every single web page have to be specified by hand, in a very time consuming process. In this work, we propose the reading protocol software which breaks eye tracking data down to the textual level by considering the HTML structure of the web pages. This has a lot of advantages for the analyst. First and foremost, it can easily be identified on a large scale what has actually been viewed and read on the stimuli pages by the subjects. Second, the web page structure can be used to filter to AOIs. Third, gaze data of multiple users can be presented on the same page, and fourth, fixation times on text can be exported and further processed in other tools. We present the software, its validation, and example use cases with data from three existing IIR experiments.
Personalized recommendations on the Netflix Homepage are based on a users viewing habits and the behavior of similar users. These recommendations, organized for efficient browsing, enable users to discover the next great video to watch and enjoy without additional input or an explicit expression of their intents or goals. The Netflix Search experience, on the other hand, allows users to take active control of discovering new videos by explicitly expressing their entertainment needs via search queries. In this talk, we discuss the importance of producing search results that go beyond traditional keyword-matches to effectively satisfy users search needs in the Netflix entertainment setting. Motivated by users various search intents, we highlight the necessity to improve Search by applying approaches that have historically powered the Homepage. Specifically, we discuss our approach to leverage recommendations in the context of Search and to effectively organize search results to provide a product experience that meaningfully adds value for our users.
40 - Gangli Liu , Ling Feng 2016
Re-finding electronic documents from a personal computer is a frequent demand to users. In a simple re-finding task, people can use many methods to retrieve a document, such as navigating directly to the documents folder, searching with a desktop search engine, or checking the Recent Files List. However, when encountering a difficult re-finding task, people usually cannot remember the attributes used by conventional re-finding methods, such as file path, file name, keywords etc., the re-finding would fail. We propose a new method to support difficult re-finding tasks. When a user is reading a document, we collect all kinds of possible memory pieces of the user about the document, such as number of pages, number of images, number of math formulas, cumulative reading time, reading frequency, printing experiences etc. If the user wants to re-find a document later, we use these collected attributes to filter out the target document. To alleviate the users cognitive burden, we use a question and answer wizard interface and provide recommendations to the answers for the user, the recommendations are generated by analyzing the collected attributes of each document and the users experiences about them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا