No Arabic abstract
We study a simple class of dark matter models with N_f copies of electroweak fermionic multiplets, stabilized by O(N_F) global symmetry. Unlike conventional minimal dark matter which usually suffers from Landau poles, in these models the gauge coupling g_2 has a non-trivial ultraviolet fixed point, and thus is asymptotically safe as long as N_F is large enough. These fermionic n-plet models have only two free parameters: N_F and a common mass M_DM, which relate to dark matter relic abundance. We find that the mass of triplet fermionic dark matter with N_F being dozens of flavors can be several hundred GeV, which is testable on LHC. A benefit of large N_F is that DM pair annihilation rate in dwarf galaxies is effectively suppressed by 1/N_F, and thus they can evade the constraint from gamma-ray continuous spectrum observation. For the case of triplets, we find that the models in the range 3 <= N_F <= 20 are consistent with all current experiments. However, for N_F quintuplets, even with large N_F they are still disfavored by the gamma-ray continuous spectrum.
We compute the effective potential for scalar fields in asymptotically safe quantum gravity. A scaling potential and other scaling functions generalize the fixed point values of renormalizable couplings. The scaling potential takes a non-polynomial form, approaching typically a constant for large values of scalar fields. Spontaneous symmetry breaking may be induced by non-vanishing gauge couplings. We strengthen the arguments for a prediction of the ratio between the masses of the top quark and the Higgs boson. Higgs inflation in the standard model is unlikely to be compatible with asymptotic safety. Scaling solutions with vanishing relevant parameters can be sufficient for a realistic description of particle physics and cosmology, leading to an asymptotically vanishing cosmological constant or dynamical dark energy.
Minimal Dark Matter (MDM) is a theoretical framework highly appreciated for its minimality and yet its predictivity. Of the two only viable candidates singled out in the original analysis, the scalar eptaplet has been found to decay too quickly to be around today, while the fermionic quintuplet is now being probed by indirect Dark Matter (DM) searches. It is therefore timely to critically review the MDM paradigm, possibly pointing out generalizations of this framework. We propose and explore two distinct directions. One is to abandon the assumption of DM electric neutrality in favor of absolutely stable, millicharged DM candidates which are part of $SU(2)_{text{L}}$ multiplets with integer isospin. Another possibility is to lower the cutoff of the model, which was originally fixed at the Planck scale, to allow for DM decays. We find new viable MDM candidates and study their phenomenology in detail.
Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be fuzzy in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.
We minimally extend the Standard Model field content by adding new vector-like fermions at the TeV scale to allow gauge coupling unification at a realistic scale. We embed the model into a $SU(5)$ grand unified theory that is asymptotically safe and features an interacting fixed point for the gauge coupling. There are no Landau poles of the $U(1)$ gauge and Higgs couplings. Gauge, Yukawa and Higgs couplings are retraced from the fixed point and matched at the grand unification scale to those of the Standard Model rescaled up to the same energy. All couplings, their fixed point values and critical exponents always remain in the perturbative regime.
We discuss the gravitational creation of superheavy particles $chi$ in an inflationary scenario with a quartic potential and a non-minimal coupling between the inflaton $varphi$ and the Ricci curvature: $xi varphi^2 R/2$. We show that for large constants $xi >> 1$, there can be abundant production of particles $chi$ with masses largely exceeding the inflationary Hubble rate $H_{infl}$, up to $(a~few) times xi H_{infl}$, even if they are conformally coupled to gravity. We discuss two scenarios involving these gravitationally produced particles $chi$. In the first scenario, the inflaton has only gravitational interactions with the matter sector and the particles $chi$ reheat the Universe. In this picture, the inflaton decays only due to the cosmic expansion, and effectively contributes to dark radiation, which can be of the observable size. The existing limits on dark radiation lead to an upper bound on the reheating temperature. In the second scenario, the particles $chi$ constitute Dark Matter, if substantially stable. In this case, their typical masses should be in the ballpark of the Grand Unification scale.