Do you want to publish a course? Click here

Gravitational reheating and superheavy Dark Matter creation after inflation with non-minimal coupling

66   0   0.0 ( 0 )
 Added by Sabir Ramazanov Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the gravitational creation of superheavy particles $chi$ in an inflationary scenario with a quartic potential and a non-minimal coupling between the inflaton $varphi$ and the Ricci curvature: $xi varphi^2 R/2$. We show that for large constants $xi >> 1$, there can be abundant production of particles $chi$ with masses largely exceeding the inflationary Hubble rate $H_{infl}$, up to $(a~few) times xi H_{infl}$, even if they are conformally coupled to gravity. We discuss two scenarios involving these gravitationally produced particles $chi$. In the first scenario, the inflaton has only gravitational interactions with the matter sector and the particles $chi$ reheat the Universe. In this picture, the inflaton decays only due to the cosmic expansion, and effectively contributes to dark radiation, which can be of the observable size. The existing limits on dark radiation lead to an upper bound on the reheating temperature. In the second scenario, the particles $chi$ constitute Dark Matter, if substantially stable. In this case, their typical masses should be in the ballpark of the Grand Unification scale.



rate research

Read More

We study the superheavy dark matter (DM) scenario in an extended $B-L$ model, where one generation of right-handed neutrino $ u_R$ is the DM candidate. If there is a new lighter sterile neutrino that co-annihilate with the DM candidate, then the annihilation rate is exponentially enhanced, allowing a DM mass much heavier than the Griest-Kamionkowski bound ($sim10^5$ GeV). We demonstrate that a DM mass $M_{ u_R}gtrsim10^{13}$ GeV can be achieved. Although beyond the scale of any traditional DM searching strategy, this scenario is testable via gravitational waves (GWs) emitted by the cosmic strings from the $U(1)_{B-L}$ breaking. Quantitative calculations show that the DM mass $mathcal{O}(10^9-10^{13}~{rm GeV})$ can be probed by future GW detectors.
We systematically investigate the preheating behavior of single field inflation with an oscillon-supporting potential. We compute the properties of the emitted gravitational waves (GWs) and the number density and characteristics of the produced oscillons. By performing numerical simulations for a variety of potential types, we divide the analyzed potentials in two families, each of them containing potentials with varying large- or small-field dependence. We find that the shape and amplitude of the emitted GW spectrum have a universal feature, with the peak around the physical wavenumber $k/a sim m$ at the inflaton oscillation period, irrespective of the exact potential shape. This can be used as a smoking-gun for deducing the existence of a violent preheating phase and possible oscillon formation after inflation. Despite this apparent universality, we find differences in the shape of the emitted GW spectra between the two potential families, leading to discriminating features between them. In particular, all potentials show the emergence of a two-peak structure in the GW spectrum, arising at the time of oscillon formation. However, potentials exhibiting efficient parametric resonance tend to smear out this structure and by the end of the simulation the GW spectrum exhibits a single broad peak. We further compute the properties of the produced oscillons for each potential, finding differences in the number density and size distribution of stable oscillons and transient overdensities. We perform a linear fluctuation analysis and use Floquet charts to relate the results of our simulations to the structure of parametric resonance. We find that the growth rate of scalar perturbations and the associated oscillon formation time are sensitive to the small-field potential shape while the macroscopic physical properties of oscillons (e.g. total number) depend on the large-field potential shape.
The predictions of standard Higgs inflation in the framework of the metric formalism yield a tensor-to-scalar ratio $r sim 10^{-3}$ which lies well within the expected accuracy of near-future experiments $ sim 10^{-4}$. When the Palatini formalism is employed, the predicted values of $r$ get highly-suppressed $rsim 10^{-12}$ and consequently a possible non-detection of primordial tensor fluctuations will rule out only the metric variant of the model. On the other hand, the extremely small values predicted for $r$ by the Palatini approach constitute contact with observations a hopeless task for the foreseeable future. In this work, we propose a way to remedy this issue by extending the action with the inclusion of a generalized non-minimal derivative coupling term between the inflaton and the Einstein tensor of the form $m^{-2}(phi) G_{mu u} abla^{mu}phi abla^{ u}phi$. We find that with such a modification, the Palatini predictions can become comparable with the ones obtained in the metric formalism, thus providing ample room for the model to be in contact with observations in the near future.
396 - Joel M. Weller 2013
The inclusion of Dirac fermions in Einstein-Cartan gravity leads to a four-fermion interaction mediated by non-propagating torsion, which can allow for the formation of a Bardeen-Cooper-Schrieffer condensate. By considering a simplified model in 2+1 spacetime dimensions, we show that even without an excess of fermions over antifermions, the nonthermal distribution arising from preheating after inflation can give rise to a fermion condensate generated by torsion. We derive the effective Lagrangian for the spacetime-dependent pair field describing the condensate in the extreme cases of nonrelativistic and massless fermions, and show that it satisfies the Gross-Pitaevski equation for a gapless, propagating mode.
114 - C. Pallis , N. Toumbas 2011
We consider a phenomenological extension of the minimal supersymmetric standard model which incorporates non-minimal chaotic inflation, driven by a quartic potential associated with the lightest right-handed sneutrino. Inflation is followed by a Peccei-Quinn phase transition based on renormalizable superpotential terms, which resolves the strong CP and mu problems of the minimal supersymmetric standard model provided that one related parameter of the superpotential is somewhat small. Baryogenesis occurs via non-thermal leptogenesis, which is realized by the inflaton decay. Confronting our scenario with the current observational data on the inflationary observables, the baryon assymetry of the universe, the gravitino limit on the reheating temperature and the upper bound on the light neutrino masses, we constrain the effective Yukawa coupling involved in the decay of the inflaton to relatively small values and the inflaton mass to values lower than 10^12 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا