Do you want to publish a course? Click here

The Return of the WIMP: Missing Energy Signals and the Galactic Center Excess

103   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a recent work, we emphasized that an excess in tri-lepton events plus missing energy observed by the ATLAS experiment at the LHC could be interpreted as a signal of low energy supersymmetry. In such a scenario the lightest neutralino mass is approximately $m_chi simeq 60$ GeV and the direct Dark Matter detection cross section is naturally below the current bound. In this work we present simple extensions of this scenario that lead to an explanation of the gamma ray excess at the center of the galaxy observed by Fermi-LAT, as well as the anti-proton excess observed by AMS-02. These extensions include the addition of a small CP violating phase in the neutralino sector or the addition of a light CP-odd Higgs scalar. Our study is of special relevance in view of a recent analysis that casts doubt on the previously accepted preference for mili-second pulsars as the origin of the galactic center excess.

rate research

Read More

We attempt to build a model that describes the {it Fermi} galactic gamma-ray excess (FGCE) within a UV-complete Supersymmetric framework; we find this to be highly non-trivial. At the very least a successful Supersymmetric explanation must have several important ingredients in order to fit the data and satisfy other theoretical and experimental constraints. Under the assumption that a {it single} annihilation mediator is responsible for both the observed relic density as well as the FGCE, we show that the requirements are not easily satisfied in many TeV-scale SUSY models, but can be met with some model building effort in the general NMSSM with $sim 10$ parameters beyond the MSSM. We find that the data selects a particular region of the parameter space with a mostly singlino lightest Supersymmetric particle and a relatively light CP-odd Higgs boson that acts as the mediator for dark matter annihilation. We study the predictions for various observables within this parameter space, and find that searches for this light CP-odd state at the LHC, as well as searches for the direct detection of dark matter, are likely to be quite challenging. It is possible that a signature could be observed in the flavor sector; however, indirect detection remains the best probe of this scenario.
We re-examine evidence that the Galactic Center Excess (GCE) originates primarily from point sources (PSs). We show that in our region of interest, non-Poissonian template fitting (NPTF) evidence for GCE PSs is an artifact of unmodeled north-south asymmetry of the GCE. This asymmetry is strongly favored by the fit (although it is unclear if this is physical), and when it is allowed, the preference for PSs becomes insignificant. We reproduce this behavior in simulations, including detailed properties of the spurious PS population. We conclude that NTPF evidence for GCE PSs is highly susceptible to certain systematic errors, and should not at present be taken to robustly disfavor a dominantly smooth GCE.
We show that the Galactic Center Excess (GCE) emission, as recently updated by the Fermi-LAT Collaboration, could be explained by the sum of Fermi-bubbles-like emission plus dark matter (DM) annihilation, in the context of a scalar-singlet Higgs portal scenario (SHP). In fact, the standard SHP, where the DM particle, $S$, only has renormalizable interactions with the Higgs, is non-operational due to strong constraints, specially from DM direct detection limits. Thus we consider a most economical extension, called ESHP (for extended SHP), which simply consists in the addition of a second (heavier) scalar singlet in the dark sector. The second scalar can be integrated-out, leaving a standard SHP plus a dimension-6 operator. Essentially, this model has only two relevant parameters (the DM mass and the coupling of the dim-6 operator). DM annihilation occurs mainly into two Higgs bosons, $SSrightarrow hh$. We demonstrate that, despite its economy, the ESHP model provides excellent fits to the GCE (with p-value $sim 0.6-0.7$) for very reasonable values of the parameters, in particular $m_S simeq 130$ GeV. This is achieved without conflicting with other observables and keeping the $S-$particle relic density at the accepted value for the DM content in the universe.
Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing energy-duality invariance under $E_gamma rightarrow E_ast^2/E_gamma$ for some $E_ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center excess in the energy range around 1 GeV.
The singlet-doublet fermion dark matter model (SDFDM) provides a good DM candidate as well as the possibility of generating neutrino masses radiatively. The search and identification of DM requires the combined effort of both indirect and direct DM detection experiments in addition to the LHC. Remarkably, an excess of GeV gamma rays from the Galactic Center (GCE) has been measured with the textit{Fermi} Large Area Telescope (LAT) which appears to be robust with respect to changes in the diffuse galactic background modeling. Although several astrophysical explanations have been proposed, DM remains a simple and well motivated alternative. In this work, we examine the sensitivities of dark matter searches in the SDFDM scenario using $textit{Fermi}$-LAT, CTA, IceCube/DeepCore, LUX, PICO and LHC with an emphasis on exploring the regions of the parameter space that can account for the GCE. We find that DM particles present in this model with masses close to $sim 99$ GeV and $sim (173-190)$ GeV annihilating predominantly into the $W^+W^-$ channel and $tbar{t}$ channel respectively, provide an acceptable fit to the GCE while being consistent with different current experimental bounds. We also find that much of the obtained parameter space can be ruled out by future direct search experiments like LZ and XENON-1T, in case of null results by these detectors. Interestingly, we show that the most recent data by LUX is starting to probe the best fit region in the SDFDM model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا