No Arabic abstract
We show that the Galactic Center Excess (GCE) emission, as recently updated by the Fermi-LAT Collaboration, could be explained by the sum of Fermi-bubbles-like emission plus dark matter (DM) annihilation, in the context of a scalar-singlet Higgs portal scenario (SHP). In fact, the standard SHP, where the DM particle, $S$, only has renormalizable interactions with the Higgs, is non-operational due to strong constraints, specially from DM direct detection limits. Thus we consider a most economical extension, called ESHP (for extended SHP), which simply consists in the addition of a second (heavier) scalar singlet in the dark sector. The second scalar can be integrated-out, leaving a standard SHP plus a dimension-6 operator. Essentially, this model has only two relevant parameters (the DM mass and the coupling of the dim-6 operator). DM annihilation occurs mainly into two Higgs bosons, $SSrightarrow hh$. We demonstrate that, despite its economy, the ESHP model provides excellent fits to the GCE (with p-value $sim 0.6-0.7$) for very reasonable values of the parameters, in particular $m_S simeq 130$ GeV. This is achieved without conflicting with other observables and keeping the $S-$particle relic density at the accepted value for the DM content in the universe.
We consider a simple extension of the type-II two-Higgs-doublet model by introducing a real scalar as a candidate for dark matter in the present Universe. The main annihilation mode of the dark matter particle with a mass of around $31-40$ GeV is into a $bbar{b}$ pair, and this annihilation mode suitably explains the observed excess of the gamma-ray flux from the Galactic Center. We identify the parameter region of the model that can fit the gamma-ray excess and satisfy phenomenological constraints, such as the observed dark matter relic density and the null results of direct dark matter search experiments. Most of the parameter region is found to be within the search reach of future direct dark matter detection experiments.
We investigate a neutral gauge boson X originated from a hidden U(1) extension of the standard model as the particle dark matter candidate. The vector dark matter interacts with the standard model fermions through heavy fermion mediators. The interactions give rise to t-channel annihilation cross section in the XX to ff process, which dominates the thermal relic abundance during thermal freeze-out and produces measurable gamma-ray flux in the galactic halo. For a light vector dark matter, if it predominantly couples to the third generation fermions, this model could explain the excess of gamma rays from the galactic center. We show that the vector dark matter with a mass of 20 ~ 40 GeV and that annihilate into the bb and tautau final states provides an excellent description of the observed gamma-ray excess. The parameter space aimed at explaining the gamma-ray excess, could also provide the correct thermal relic density and is compatible with the constraints from electroweak precision data, Higgs invisible decay, and collider searches. We also show the dark matter couplings to the nucleon from the fermion portal interactions are loop-suppressed, and only contribute to the spin-dependent cross section. So the vector dark matter could easily escape the stringent constraints from the direct detection experiments.
The singlet-doublet fermion dark matter model (SDFDM) provides a good DM candidate as well as the possibility of generating neutrino masses radiatively. The search and identification of DM requires the combined effort of both indirect and direct DM detection experiments in addition to the LHC. Remarkably, an excess of GeV gamma rays from the Galactic Center (GCE) has been measured with the textit{Fermi} Large Area Telescope (LAT) which appears to be robust with respect to changes in the diffuse galactic background modeling. Although several astrophysical explanations have been proposed, DM remains a simple and well motivated alternative. In this work, we examine the sensitivities of dark matter searches in the SDFDM scenario using $textit{Fermi}$-LAT, CTA, IceCube/DeepCore, LUX, PICO and LHC with an emphasis on exploring the regions of the parameter space that can account for the GCE. We find that DM particles present in this model with masses close to $sim 99$ GeV and $sim (173-190)$ GeV annihilating predominantly into the $W^+W^-$ channel and $tbar{t}$ channel respectively, provide an acceptable fit to the GCE while being consistent with different current experimental bounds. We also find that much of the obtained parameter space can be ruled out by future direct search experiments like LZ and XENON-1T, in case of null results by these detectors. Interestingly, we show that the most recent data by LUX is starting to probe the best fit region in the SDFDM model.
An excess of $gamma$ rays in the data measured by the Fermi Large Area Telescope in the direction of the Galactic center has been reported in several publications. This excess, labeled as the Galactic center excess (GCE), is detected analyzing the data with different interstellar emission models, point source catalogs and analysis techniques. The characteristics of the GCE, recently measured with unprecedented precision, are all compatible with dark matter particles (DM) annihilating in the main halo of our Galaxy, even if other interpretations are still not excluded. We investigate the DM candidates that fit the observed GCE spectrum and spatial morphology. We assume a simple scenario with DM annihilating into a single channel but we inspect also more complicated models with two and three channels. We perform a search for a $gamma$-ray flux from a list of 48 Milky Way dwarf spheroidal galaxies (dSphs) using state-of-the-art estimation of the DM density in these objects. Since we do not find any significant signal from the dSphs, we put upper limits on the annihilation cross section that result to be compatible with the DM candidate that fits the GCE. However, we find that the GCE DM signal is excluded by the AMS-02 $bar{p}$ flux data for all hadronic and semi-hadronic annihilation channels unless the vertical size of the diffusion halo is smaller than 2 kpc -- which is in tension with radioactive cosmic ray fluxes and radio data. Furthermore, AMS-02 $e^+$ data rule out pure or mixed channels with a component of $e^+ e^-$. The only DM candidate that fits the GCE spectrum and is compatible with constraints obtained with the combined dSphs analysis and the AMS-02 $bar{p}$ and $e^+$ data annihilates purely into $mu^+mu^-$, has a mass of 60 GeV and roughly a thermal cross section.
The extended excess toward the Galactic Center (GC) in gamma rays inferred from Fermi-LAT observations has been interpreted as being due to dark matter (DM) annihilation. Here, we perform new likelihood analyses of the GC and show that, when including templates for the stellar galactic and nuclear bulges, the GC shows no significant detection of a DM annihilation template, even after generous variations in the Galactic diffuse emission models and a wide range of DM halo profiles. We include Galactic diffuse emission models with combinations of three-dimensional inverse Compton maps, variations of interstellar gas maps, and a central source of electrons. For the DM profile, we include both spherical and ellipsoidal DM morphologies and a range of radial profiles from steep cusps to kiloparsec-sized cores, motivated in part by hydrodynamical simulations. Our derived upper limits on the dark matter annihilation flux place strong constraints on DM properties. In the case of the pure $b$-quark annihilation channel, our limits on the annihilation cross section are more stringent than those from the Milky Way dwarfs up to DM masses of approximately TeV and rule out the thermal relic cross section up to approximately 300 GeV. Better understanding of the DM profile, as well as the Fermi-LAT data at its highest energies, would further improve the sensitivity to DM properties.