In this paper, we investigate how semantic relations between concepts extracted from medical documents can be employed to improve the retrieval of medical literature. Semantic relations explicitly represent relatedness between concepts and carry high informative power that can be leveraged to improve the effectiveness of retrieval functionalities of clinical decision support systems. We present preliminary results and show how relations are able to provide a sizable increase of the precision for several topics, albeit having no impact on others. We then discuss some future directions to minimize the impact of negative results while maximizing the impact of good results.
In clinical care, obtaining a correct diagnosis is the first step towards successful treatment and, ultimately, recovery. Depending on the complexity of the case, the diagnostic phase can be lengthy and ridden with errors and delays. Such errors have a high likelihood to cause patients severe harm or even lead to their death and are estimated to cost the U.S. healthcare system several hundred billion dollars each year. To avoid diagnostic errors, physicians increasingly rely on diagnostic decision support systems drawing from heuristics, historic cases, textbooks, clinical guidelines and scholarly biomedical literature. The evaluation of such systems, however, is often conducted in an ad-hoc fashion, using non-transparent methodology, and proprietary data. This paper presents DC3, a collection of 31 extremely difficult diagnostic case challenges, manually compiled and solved by clinical experts. For each case, we present a number of temporally ordered physician-generated observations alongside the eventually confirmed true diagnosis. We additionally provide inferred dense relevance judgments for these cases among the PubMed collection of 27 million scholarly biomedical articles.
Owe to the recent advancements in Artificial Intelligence especially deep learning, many data-driven decision support systems have been implemented to facilitate medical doctors in delivering personalized care. We focus on the deep reinforcement learning (DRL) models in this paper. DRL models have demonstrated human-level or even superior performance in the tasks of computer vision and game playings, such as Go and Atari game. However, the adoption of deep reinforcement learning techniques in clinical decision optimization is still rare. We present the first survey that summarizes reinforcement learning algorithms with Deep Neural Networks (DNN) on clinical decision support. We also discuss some case studies, where different DRL algorithms were applied to address various clinical challenges. We further compare and contrast the advantages and limitations of various DRL algorithms and present a preliminary guide on how to choose the appropriate DRL algorithm for particular clinical applications.
The pervasive application of algorithmic decision-making is raising concerns on the risk of unintended bias in AI systems deployed in critical settings such as healthcare. The detection and mitigation of biased models is a very delicate task which should be tackled with care and involving domain experts in the loop. In this paper we introduce FairLens, a methodology for discovering and explaining biases. We show how our tool can be used to audit a fictional commercial black-box model acting as a clinical decision support system. In this scenario, the healthcare facility experts can use FairLens on their own historical data to discover the models biases before incorporating it into the clinical decision flow. FairLens first stratifies the available patient data according to attributes such as age, ethnicity, gender and insurance; it then assesses the model performance on such subgroups of patients identifying those in need of expert evaluation. Finally, building on recent state-of-the-art XAI (eXplainable Artificial Intelligence) techniques, FairLens explains which elements in patients clinical history drive the model error in the selected subgroup. Therefore, FairLens allows experts to investigate whether to trust the model and to spotlight group-specific biases that might constitute potential fairness issues.
In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised Natural Language Processing and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting from the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.
The Clinical E-Science Framework (CLEF) project was used to extract important information from medical texts by building a system for the purpose of clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. The system is divided into two parts, one part concerns with the identification of relationships between clinically important entities in the text. The full parses and domain-specific grammars had been used to apply many approaches to extract the relationship. In the second part of the system, statistical machine learning (ML) approaches are applied to extract relationship. A corpus of oncology narratives that hand annotated with clinical relationships can be used to train and test a system that has been designed and implemented by supervised machine learning (ML) approaches. Many features can be extracted from these texts that are used to build a model by the classifier. Multiple supervised machine learning algorithms can be applied for relationship extraction. Effects of adding the features, changing the size of the corpus, and changing the type of the algorithm on relationship extraction are examined. Keywords: Text mining; information extraction; NLP; entities; and relations.