Do you want to publish a course? Click here

FairLens: Auditing Black-box Clinical Decision Support Systems

87   0   0.0 ( 0 )
 Added by Cecilia Panigutti
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The pervasive application of algorithmic decision-making is raising concerns on the risk of unintended bias in AI systems deployed in critical settings such as healthcare. The detection and mitigation of biased models is a very delicate task which should be tackled with care and involving domain experts in the loop. In this paper we introduce FairLens, a methodology for discovering and explaining biases. We show how our tool can be used to audit a fictional commercial black-box model acting as a clinical decision support system. In this scenario, the healthcare facility experts can use FairLens on their own historical data to discover the models biases before incorporating it into the clinical decision flow. FairLens first stratifies the available patient data according to attributes such as age, ethnicity, gender and insurance; it then assesses the model performance on such subgroups of patients identifying those in need of expert evaluation. Finally, building on recent state-of-the-art XAI (eXplainable Artificial Intelligence) techniques, FairLens explains which elements in patients clinical history drive the model error in the selected subgroup. Therefore, FairLens allows experts to investigate whether to trust the model and to spotlight group-specific biases that might constitute potential fairness issues.



rate research

Read More

Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This paper describes the design and field evaluation of a radically new form of DST. It automatically generates slides for clinicians decision meetings with subtly embedded machine prognostics. This design took inspiration from the notion of Unremarkable Computing, that by augmenting the users routines technology/AI can have significant importance for the users yet remain unobtrusive. Our field evaluation suggests clinicians are more likely to encounter and embrace such a DST. Drawing on their responses, we discuss the importance and intricacies of finding the right level of unremarkableness in DST design, and share lessons learned in prototyping critical AI systems as a situated experience.
Owe to the recent advancements in Artificial Intelligence especially deep learning, many data-driven decision support systems have been implemented to facilitate medical doctors in delivering personalized care. We focus on the deep reinforcement learning (DRL) models in this paper. DRL models have demonstrated human-level or even superior performance in the tasks of computer vision and game playings, such as Go and Atari game. However, the adoption of deep reinforcement learning techniques in clinical decision optimization is still rare. We present the first survey that summarizes reinforcement learning algorithms with Deep Neural Networks (DNN) on clinical decision support. We also discuss some case studies, where different DRL algorithms were applied to address various clinical challenges. We further compare and contrast the advantages and limitations of various DRL algorithms and present a preliminary guide on how to choose the appropriate DRL algorithm for particular clinical applications.
In this study, we present a novel clinical decision support system and discuss its interpretability-related properties. It combines a decision set of rules with a machine learning scheme to offer global and local interpretability. More specifically, machine learning is used to predict the likelihood of each of those rules to be correct for a particular patient, which may also contribute to better predictive performances. Moreover, the reliability analysis of individual predictions is also addressed, contributing to further personalized interpretability. The combination of these several elements may be crucial to obtain the clinical stakeholders trust, leading to a better assessment of patients conditions and improvement of the physicians decision-making.
We study the problem of finding a universal (image-agnostic) perturbation to fool machine learning (ML) classifiers (e.g., neural nets, decision tress) in the hard-label black-box setting. Recent work in adversarial ML in the white-box setting (model parameters are known) has shown that many state-of-the-art image classifiers are vulnerable to universal adversarial perturbations: a fixed human-imperceptible perturbation that, when added to any image, causes it to be misclassified with high probability Kurakin et al. [2016], Szegedy et al. [2013], Chen et al. [2017a], Carlini and Wagner [2017]. This paper considers a more practical and challenging problem of finding such universal perturbations in an obscure (or black-box) setting. More specifically, we use zeroth order optimization algorithms to find such a universal adversarial perturbation when no model information is revealed-except that the attacker can make queries to probe the classifier. We further relax the assumption that the output of a query is continuous valued confidence scores for all the classes and consider the case where the output is a hard-label decision. Surprisingly, we found that even in these extremely obscure regimes, state-of-the-art ML classifiers can be fooled with a very high probability just by adding a single human-imperceptible image perturbation to any natural image. The surprising existence of universal perturbations in a hard-label black-box setting raises serious security concerns with the existence of a universal noise vector that adversaries can possibly exploit to break a classifier on most natural images.
In clinical care, obtaining a correct diagnosis is the first step towards successful treatment and, ultimately, recovery. Depending on the complexity of the case, the diagnostic phase can be lengthy and ridden with errors and delays. Such errors have a high likelihood to cause patients severe harm or even lead to their death and are estimated to cost the U.S. healthcare system several hundred billion dollars each year. To avoid diagnostic errors, physicians increasingly rely on diagnostic decision support systems drawing from heuristics, historic cases, textbooks, clinical guidelines and scholarly biomedical literature. The evaluation of such systems, however, is often conducted in an ad-hoc fashion, using non-transparent methodology, and proprietary data. This paper presents DC3, a collection of 31 extremely difficult diagnostic case challenges, manually compiled and solved by clinical experts. For each case, we present a number of temporally ordered physician-generated observations alongside the eventually confirmed true diagnosis. We additionally provide inferred dense relevance judgments for these cases among the PubMed collection of 27 million scholarly biomedical articles.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا