No Arabic abstract
Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, without knowing the occurrence time of events. This paper proposes a connectionist temporal classification (CTC) based SED system that uses SLD instead of strongly labelled data, with a novel unsupervised clustering stage. Experiments on 41 classes of sound events show that the proposed two-stage method trained on SLD achieves performance comparable to the previous state-of-the-art SED system trained on strongly labelled data, and is far better than another state-of-the-art SED system trained on weakly labelled data, which indicates the effectiveness of the proposed two-stage method trained on SLD without any onset/offset time of sound events.
Audio tagging aims to predict one or several labels in an audio clip. Many previous works use weakly labelled data (WLD) for audio tagging, where only presence or absence of sound events is known, but the order of sound events is unknown. To use the order information of sound events, we propose sequential labelled data (SLD), where both the presence or absence and the order information of sound events are known. To utilize SLD in audio tagging, we propose a Convolutional Recurrent Neural Network followed by a Connectionist Temporal Classification (CRNN-CTC) objective function to map from an audio clip spectrogram to SLD. Experiments show that CRNN-CTC obtains an Area Under Curve (AUC) score of 0.986 in audio tagging, outperforming the baseline CRNN of 0.908 and 0.815 with Max Pooling and Average Pooling, respectively. In addition, we show CRNN-CTC has the ability to predict the order of sound events in an audio clip.
Audio tagging aims to detect the types of sound events occurring in an audio recording. To tag the polyphonic audio recordings, we propose to use Connectionist Temporal Classification (CTC) loss function on the top of Convolutional Recurrent Neural Network (CRNN) with learnable Gated Linear Units (GLU-CTC), based on a new type of audio label data: Sequentially Labelled Data (SLD). In GLU-CTC, CTC objective function maps the frame-level probability of labels to clip-level probability of labels. To compare the mapping ability of GLU-CTC for sound events, we train a CRNN with GLU based on Global Max Pooling (GLU-GMP) and a CRNN with GLU based on Global Average Pooling (GLU-GAP). And we also compare the proposed GLU-CTC system with the baseline system, which is a CRNN trained using CTC loss function without GLU. The experiments show that the GLU-CTC achieves an Area Under Curve (AUC) score of 0.882 in audio tagging, outperforming the GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of 0.837. That means based on the same CRNN model with GLU, the performance of CTC mapping is better than the GMP and GAP mapping. Given both based on the CTC mapping, the CRNN with GLU outperforms the CRNN without GLU.
In Psychology, actions are paramount for humans to identify sound events. In Machine Learning (ML), action recognition achieves high accuracy; however, it has not been asked whether identifying actions can benefit Sound Event Classification (SEC), as opposed to mapping the audio directly to a sound event. Therefore, we propose a new Psychology-inspired approach for SEC that includes identification of actions via human listeners. To achieve this goal, we used crowdsourcing to have listeners identify 20 actions that in isolation or in combination may have produced any of the 50 sound events in the well-studied dataset ESC-50. The resulting annotations for each audio recording relate actions to a database of sound events for the first time. The annotations were used to create semantic representations called Action Vectors (AVs). We evaluated SEC by comparing the AVs with two types of audio features -- log-mel spectrograms and state-of-the-art audio embeddings. Because audio features and AVs capture different abstractions of the acoustic content, we combined them and achieved one of the highest reported accuracies (88%).
In this paper, we present a method called HODGEPODGEfootnotemark[1] for large-scale detection of sound events using weakly labeled, synthetic, and unlabeled data proposed in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019 challenge Task 4: Sound event detection in domestic environments. To perform this task, we adopted the convolutional recurrent neural networks (CRNN) as our backbone network. In order to deal with a small amount of tagged data and a large amounts of unlabeled in-domain data, we aim to focus primarily on how to apply semi-supervise learning methods efficiently to make full use of limited data. Three semi-supervised learning principles have been used in our system, including: 1) Consistency regularization applies data augmentation; 2) MixUp regularizer requiring that the predictions for a interpolation of two inputs is close to the interpolation of the prediction for each individual input; 3) MixUp regularization applies to interpolation between data augmentations. We also tried an ensemble of various models, which are trained by using different semi-supervised learning principles. Our proposed approach significantly improved the performance of the baseline, achieving the event-based f-measure of 42.0% compared to 25.8% event-based f-measure of the baseline in the provided official evaluation dataset. Our submissions ranked third among 18 teams in the task 4.
Training a sound event detection algorithm on a heterogeneous dataset including both recorded and synthetic soundscapes that can have various labeling granularity is a non-trivial task that can lead to systems requiring several technical choices. These technical choices are often passed from one system to another without being questioned. We propose to perform a detailed analysis of DCASE 2020 task 4 sound event detection baseline with regards to several aspects such as the type of data used for training, the parameters of the mean-teacher or the transformations applied while generating the synthetic soundscapes. Some of the parameters that are usually used as default are shown to be sub-optimal.