Do you want to publish a course? Click here

Audio Tagging With Connectionist Temporal Classification Model Using Sequential Labelled Data

242   0   0.0 ( 0 )
 Added by Yuanbo Hou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Audio tagging aims to predict one or several labels in an audio clip. Many previous works use weakly labelled data (WLD) for audio tagging, where only presence or absence of sound events is known, but the order of sound events is unknown. To use the order information of sound events, we propose sequential labelled data (SLD), where both the presence or absence and the order information of sound events are known. To utilize SLD in audio tagging, we propose a Convolutional Recurrent Neural Network followed by a Connectionist Temporal Classification (CRNN-CTC) objective function to map from an audio clip spectrogram to SLD. Experiments show that CRNN-CTC obtains an Area Under Curve (AUC) score of 0.986 in audio tagging, outperforming the baseline CRNN of 0.908 and 0.815 with Max Pooling and Average Pooling, respectively. In addition, we show CRNN-CTC has the ability to predict the order of sound events in an audio clip.



rate research

Read More

Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, without knowing the occurrence time of events. This paper proposes a connectionist temporal classification (CTC) based SED system that uses SLD instead of strongly labelled data, with a novel unsupervised clustering stage. Experiments on 41 classes of sound events show that the proposed two-stage method trained on SLD achieves performance comparable to the previous state-of-the-art SED system trained on strongly labelled data, and is far better than another state-of-the-art SED system trained on weakly labelled data, which indicates the effectiveness of the proposed two-stage method trained on SLD without any onset/offset time of sound events.
Audio tagging aims to detect the types of sound events occurring in an audio recording. To tag the polyphonic audio recordings, we propose to use Connectionist Temporal Classification (CTC) loss function on the top of Convolutional Recurrent Neural Network (CRNN) with learnable Gated Linear Units (GLU-CTC), based on a new type of audio label data: Sequentially Labelled Data (SLD). In GLU-CTC, CTC objective function maps the frame-level probability of labels to clip-level probability of labels. To compare the mapping ability of GLU-CTC for sound events, we train a CRNN with GLU based on Global Max Pooling (GLU-GMP) and a CRNN with GLU based on Global Average Pooling (GLU-GAP). And we also compare the proposed GLU-CTC system with the baseline system, which is a CRNN trained using CTC loss function without GLU. The experiments show that the GLU-CTC achieves an Area Under Curve (AUC) score of 0.882 in audio tagging, outperforming the GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of 0.837. That means based on the same CRNN model with GLU, the performance of CTC mapping is better than the GMP and GAP mapping. Given both based on the CTC mapping, the CRNN with GLU outperforms the CRNN without GLU.
Convolutional Neural Networks have been extensively explored in the task of automatic music tagging. The problem can be approached by using either engineered time-frequency features or raw audio as input. Modulation filter bank representations that have been actively researched as a basis for timbre perception have the potential to facilitate the extraction of perceptually salient features. We explore end-to-end learned front-ends for audio representation learning, ModNet and SincModNet, that incorporate a temporal modulation processing block. The structure is effectively analogous to a modulation filter bank, where the FIR filter center frequencies are learned in a data-driven manner. The expectation is that a perceptually motivated filter bank can provide a useful representation for identifying music features. Our experimental results provide a fully visualisable and interpretable front-end temporal modulation decomposition of raw audio. We evaluate the performance of our model against the state-of-the-art of music tagging on the MagnaTagATune dataset. We analyse the impact on performance for particular tags when time-frequency bands are subsampled by the modulation filters at a progressively reduced rate. We demonstrate that modulation filtering provides promising results for music tagging and feature representation, without using extensive musical domain knowledge in the design of this front-end.
In this paper, we describe our contribution to Task 2 of the DCASE 2018 Audio Challenge. While it has become ubiquitous to utilize an ensemble of machine learning methods for classification tasks to obtain better predictive performance, the majority of ensemble methods combine predictions rather than learned features. We propose a single-model method that combines learned high-level features computed from log-scaled mel-spectrograms and raw audio data. These features are learned separately by two Convolutional Neural Networks, one for each input type, and then combined by densely connected layers within a single network. This relatively simple approach along with data augmentation ranks among the best two percent in the Freesound General-Purpose Audio Tagging Challenge on Kaggle.
Acoustic scene classification systems using deep neural networks classify given recordings into pre-defined classes. In this study, we propose a novel scheme for acoustic scene classification which adopts an audio tagging system inspired by the human perception mechanism. When humans identify an acoustic scene, the existence of different sound events provides discriminative information which affects the judgement. The proposed framework mimics this mechanism using various approaches. Firstly, we employ three methods to concatenate tag vectors extracted using an audio tagging system with an intermediate hidden layer of an acoustic scene classification system. We also explore the multi-head attention on the feature map of an acoustic scene classification system using tag vectors. Experiments conducted on the detection and classification of acoustic scenes and events 2019 task 1-a dataset demonstrate the effectiveness of the proposed scheme. Concatenation and multi-head attention show a classification accuracy of 75.66 % and 75.58 %, respectively, compared to 73.63 % accuracy of the baseline. The system with the proposed two approaches combined demonstrates an accuracy of 76.75 %.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا