Do you want to publish a course? Click here

Quantum criticality of the Ising-like screw chain antiferromagnet SrCo2V2O8 in a transverse magnetic field

127   0   0.0 ( 0 )
 Added by Weiqiang Yu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum criticality of an Ising-like screw chain antiferromagnet SrCo$_2$V$_2$O$_8$, with a transverse magnetic field applied along the crystalline $a$-axis, is investigated by ultra-low temperature NMR measurements. The N{e}el temperature is rapidly and continuously suppressed by the field, giving rise to a quantum critical point (QCP) at $H_{C{_1}}$$approx$~7.0~T. Surprisingly, a second QCP at $H_{C{_2}}approx$~7.7~T featured with gapless excitations is resolved from both the double-peak structure of the field dependent spin-lattice relaxation rate $1/^{51}T_1$ at low temperatures and the weakly temperature-dependent $1/^{51}T_1$ at this field. Our data, combined with numerical calculations, suggest that the induced effective staggered transverse field significantly lowers the critical fields, and leads to an exposed QCP at $H_{C{_2}}$, which belongs to the one-dimensional transverse-field Ising universality.



rate research

Read More

We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8$ as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60 T. While across the N{e}el temperature of $T_Nsim5$ K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity $v(B)$ and a clear minimum of temperature $T(B)$ at $B^{c,3D}_perp=21.4$ T, indicating the suppression of the antiferromagnetic order. At higher fields, the $T(B)$ curve shows a broad minimum at $B^c_perp = 40$ T, accompanied by a broad minimum in the sound velocity and a saturation-like magnetization. These features signal a quantum phase transition which is further characterized by the divergent behavior of the Gr{u}neisen parameter $Gamma_B propto (B-B^{c}_perp)^{-1}$. By contrast, around the critical field, the Gr{u}neisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
We study the dynamics of the quasi-one-dimensional Ising-Heisenberg antiferromagnet BaCo2V2O8 under a transverse magnetic field. Combining inelastic neutron scattering experiments and theoretical analyses by field theories and numerical simulations, we mainly elucidate the structure of the spin excitation spectrum in the high field phase, appearing above the quantum phase transition point mu0Hc ~ 10 T. We find that it is characterized by collective solitonic excitations superimposed on a continuum. These solitons are strongly bound in pairs due to the effective staggered field induced by the nondiagonal g tensor of the compound, and are topologically different from the fractionalized spinons in the weak field region. The dynamical susceptibility numerically calculated with the infinite time-evolving block decimation method shows an excellent agreement with the measured spectra, which enables us to identify the dispersion branches with elementary excitations. The lowest energy dispersion has an incommensurate nature and has a local minimum at an irrational wave number due to the applied transverse field.
145 - Mona Berciu , Holger Fehske 2011
We show that a proper consideration of the contribution of Trugman loops leads to a fairly low effective mass for a hole moving in a square lattice Ising antiferromagnet, if the bare hopping and the exchange energy scales are comparable. This contradicts the general view that because of the absence of spin fluctuations, this effective mass must be extremely large. Moreover, in the presence of a transverse magnetic field, we show that the effective hopping integrals acquire an unusual dependence on the magnetic field, through Aharonov-Bohm interference, in addition to significant retardation effects. The effect of the Aharonov-Bohm interference on the cyclotron frequency (for small magnetic fields) and the Hofstadter butterfly (for large magnetic fields) is analyzed.
We report the low temperature magnetic properties of the DyScO$_3$ perovskite, which were characterized by means of single crystal and powder neutron scattering, and by magnetization measurements. Below $T_{mathrm{N}}=3.15$ K, Dy$^{3+}$ moments form an antiferromagnetic structure with an easy axis of magnetization lying in the $ab$-plane. The magnetic moments are inclined at an angle of $simpm{28}^{circ}$ to the $b$-axis. We show that the ground state Kramers doublet of Dy$^{3+}$ is made up of primarily $|pm 15/2rangle$ eigenvectors and well separated by crystal field from the first excited state at $E_1=24.9$ meV. This leads to an extreme Ising single-ion anisotropy, $M_{perp}/M_{|}sim{0.05}$. The transverse magnetic fluctuations, which are proportional to $M^{2}_{perp}/M^{2}_{|}$, are suppressed and only moment fluctuations along the local Ising direction are allowed. We also found that the Dy-Dy dipolar interactions along the crystallographic $c$-axis are 2-4 times larger than in-plane interactions.
We report on spectroscopy study of elementary magnetic excitations in an Ising-like antiferromagnetic chain compound SrCo$_2$V$_2$O$_8$ as a function of temperature and applied transverse magnetic field up to 25 T. An optical as well as an acoustic branch of confined spinons, the elementary excitations at zero field, are identified in the antiferromagnetic phase below the N{e}el temperature of 5 K and described by a one-dimensional Schr{o}dinger equation. The confinement can be suppressed by an applied transverse field and a quantum disordered phase is induced at 7 T. In this disordered paramagnetic phase, we observe three emergent fermionic excitations with different transverse-field dependencies. The nature of these modes is clarified by studying spin dynamic structure factor of a 1D transverse-field Heisenberg-Ising (XXZ) model using the method of infinite time evolving block decimation. Our work reveals emergent quantum phenomena and provides a concrete system for testifying theoretical predications of one-dimension quantum spin models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا