Do you want to publish a course? Click here

Magnetic ground state of the Ising-like antiferromagnet DyScO$_3$

115   0   0.0 ( 0 )
 Added by Andrey Podlesnyak
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the low temperature magnetic properties of the DyScO$_3$ perovskite, which were characterized by means of single crystal and powder neutron scattering, and by magnetization measurements. Below $T_{mathrm{N}}=3.15$ K, Dy$^{3+}$ moments form an antiferromagnetic structure with an easy axis of magnetization lying in the $ab$-plane. The magnetic moments are inclined at an angle of $simpm{28}^{circ}$ to the $b$-axis. We show that the ground state Kramers doublet of Dy$^{3+}$ is made up of primarily $|pm 15/2rangle$ eigenvectors and well separated by crystal field from the first excited state at $E_1=24.9$ meV. This leads to an extreme Ising single-ion anisotropy, $M_{perp}/M_{|}sim{0.05}$. The transverse magnetic fluctuations, which are proportional to $M^{2}_{perp}/M^{2}_{|}$, are suppressed and only moment fluctuations along the local Ising direction are allowed. We also found that the Dy-Dy dipolar interactions along the crystallographic $c$-axis are 2-4 times larger than in-plane interactions.



rate research

Read More

We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn$_3$Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong preference for a spin structure with $E_{1g}$ symmetry relative to the $D_{6h}$ point group. We show that weak ferromagnetism is an inevitable consequence of the symmetry of the observed magnetic structure, and that sixth order anisotropy is needed to select a unique ground state.
In an ideal classical pyrochlore antiferromagnet without perturbations, an infinite degeneracy at a ground state leads to absence of a magnetic order and spin-glass transition. Here we present Na$_3$Mn(CO$_3$)$_2$Cl as a new candidate compound where classical spins are coupled antiferromagnetically on the pyrochlore lattice, and report its structural and magnetic properties.The temperature dependences of the magnetic susceptibility and heat capacity, and the magnetization curve are consistent with those of an $S$ = 5/2 pyrochlore lattice antiferromagnet with nearest-neighbor interactions of 2 K. Neither an apparent signature of a spin-glass transition nor a magnetic order is detected in magnetization and heat capacity measurements, or powder neutron diffraction experiments. On the other hand, an antiferromagnetic short-range order from the nearest neighbors is evidenced by the $Q$-dependence of the diffuse scattering which develops around 0.85 AA$^{-1}$. A high degeneracy near the ground state in Na$_3$Mn(CO$_3$)$_2$Cl is supported by the magnetic entropy estimated as almost 4 J K$^{-2}$ mol$^{-1}$ at 0.5 K.
128 - F. Bert , D. Bono , P. Mendels 2005
Volborthite compound is one of the very few realizations of S=1/2 quantum spins on a highly frustrated kagome-like lattice. Low-T SQUID measurements reveal a broad magnetic transition below 2K which is further confirmed by a peak in the 51V nuclear spin relaxation rate (1/T1) at 1.4K$pm$0.2K. Through 51V NMR, the ground state (GS) appears to be a mixture of different spin configurations, among which 20% correspond to a well defined short range order, possibly of the $sqrt{3} times sqrt{3}$ type. While the freezing involve all the Cu$^{2+}$ spins, only 40% of the copper moment is actually frozen which suggests that quantum fluctuations strongly renormalize the GS.
Y{0.5}$Ca{0.5}BaCo4O7 contains kagome layers of Co ions, whose spins are strongly coupled according to a Curie-Weiss temperature of -2200 K. At low temperatures, T = 1.2 K, our diffuse neutron scattering study with polarization analysis reveals characteristic spin correlations close to a predicted two-dimensional coplanar ground state with staggered chirality. The absence of three dimensional long-range AF order proves negligible coupling between the kagome layers. The scattering intensities are consistent with high spin S=3/2 states of Co2+ in the kagome layers and low spin S=0 states for Co3+ ions at interlayer sites. Our observations agree with previous Monte Carlo simulations indicating a ground state of only short range chiral order.
126 - Y. Cui , H. Zou , N. Xi 2019
The quantum criticality of an Ising-like screw chain antiferromagnet SrCo$_2$V$_2$O$_8$, with a transverse magnetic field applied along the crystalline $a$-axis, is investigated by ultra-low temperature NMR measurements. The N{e}el temperature is rapidly and continuously suppressed by the field, giving rise to a quantum critical point (QCP) at $H_{C{_1}}$$approx$~7.0~T. Surprisingly, a second QCP at $H_{C{_2}}approx$~7.7~T featured with gapless excitations is resolved from both the double-peak structure of the field dependent spin-lattice relaxation rate $1/^{51}T_1$ at low temperatures and the weakly temperature-dependent $1/^{51}T_1$ at this field. Our data, combined with numerical calculations, suggest that the induced effective staggered transverse field significantly lowers the critical fields, and leads to an exposed QCP at $H_{C{_2}}$, which belongs to the one-dimensional transverse-field Ising universality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا