Do you want to publish a course? Click here

Scale-invariant spin dynamics and the quantum limits of field sensing

99   0   0.0 ( 0 )
 Added by Morgan Mitchell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe quantum limits to field sensing that relate noise, geometry and measurement duration to fundamental constants, with no reference to particle number. We cast the Tesche and Clarke (TC) bound on dc-SQUID sensitivity as such a limit, and find analogous limits for volumetric spin-precession magnetometers. We describe how randomly-arrayed spins, coupled to an external magnetic field of interest and to each other by the magnetic dipole-dipole interaction, execute a spin dynamics that depolarizes the spin ensemble even in the absence of coupling to an external reservoir. We show the resulting spin dynamics are scale invariant, with a depolarization rate proportional to spin number density and thus a number-independent quantum limit on the energy resolution per bandwidth $E_R$. Numerically, we find $E_R ge alpha hbar$, $alpha sim 1$, in agreement with the TC limit, for paradigmatic spin-based measurements of static and oscillating magnetic fields.

rate research

Read More

Radical pairs and the dynamics they undergo are prevalent in many chemical and biological systems. Specifically, it has been proposed that the radical pair mechanism results from a relatively strong hyperfine interaction with its intrinsic nuclear spin environment. While the existence of this mechanism is undisputed, the nanoscale details remain to be experimentally shown. We analyze here the role of a quantum sensor in detecting the spin dynamics (non-Markovian) of individual radical pairs in the presence of a weak magnetic field. We show how quantum control methods can be used to set apart the dynamics of radical pair mechanism at various stages of the evolution. We envisage these findings having far-reaching implications to the understanding of the physical mechanism in magnetoreception and other bio-chemical processes with a microscopic detail.
State-of-the-art sensors of force, motion and magnetic fields have reached the sensitivity where the quantum noise of the meter is significant or even dominant. In particular, the sensitivity of the best optomechanical devices has reached the Standard Quantum Limit (SQL), which directly follows from the Heisenberg uncertainty relation and corresponds to balancing the measurement imprecision and the perturbation of the probe by the quantum back action of the meter. The SQL is not truly fundamental and several methods for its overcoming have been proposed and demonstrated. At the same time, two quantum sensitivity constraints which are more fundamental are known. The first limit arises from the finiteness of the probing strength (in the case of optical interferometers - of the circulating optical power) and is known as the Energetic Quantum Limit or, in a more general context, as the Quantum Cram{e}r-Rao Bound (QCRB). The second limit arises from the dissipative dynamics of the probe, which prevents full efficacy of the quantum back action evasion techniques developed for overcoming the SQL. No particular name has been assigned to this limit; we propose the term Dissipative Quantum Limit (DQL) for it. Here we develop a unified theory of these two fundamental limits by deriving the general sensitivity constraint from which they follow as particular cases. Our analysis reveals a phase transition occurring at the boundary between the QCRB-dominated and the DQL regimes, manifested by the discontinuous derivatives of the optimal spectral densities of the meter field quantum noise. This leads to the counter-intuitive (but favorable) finding that quantum-limited sensitivity can be achieved with certain lossy meter systems. Finally, we show that the DQL originates from the non-autocommutativity of the internal thermal noise of the probe and that it can be overcome in non-stationary measurements.
Photonic spin density (PSD) in the near-field gives rise to exotic phenomena such as photonic skyrmions, optical spin-momentum locking and unidirectional topological edge waves. Experimental investigation of these phenomena requires a nanoscale probe that directly interacts with PSD. Here, we propose and demonstrate that the nitrogen-vacancy (NV) center in diamond can be used as a quantum sensor for detecting the spinning nature of photons. This room temperature magnetometer can measure the local polarization of light in ultra-subwavelength volumes through photon-spin-induced virtual transitions. The direct detection of lights spin density at the nanoscale using NV centers in diamond opens a new frontier for studying exotic phases of photons as well as future on-chip applications in spin quantum electrodynamics (sQED).
97 - Liying Bao , Bo Qi , Daoyi Dong 2021
Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and non-reciprocity can be a powerful resource for non-Hermitian quantum sensing, as non-reciprocity allows to arbitrarily exceed the fundamental bound on the measurement rate of any reciprocal sensors. Here we establish fundamental limits on signal-to-noise ratio for reciprocal and non-reciprocal non-Hermitian quantum sensing. In particular, for two-mode linear systems with two coherent drives, an approximately attainable uniform bound on the best possible measurement rate per photon is derived for both reciprocal and non-reciprocal sensors. This bound is only related to the coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate that a conventional reciprocal sensor with two drives can simulate any non-reciprocal sensor. This work also demonstrates a clear signature on how the excitation signals affect the signal-to-noise ratio in non-Hermitian quantum sensing.
The concept of entanglement, in which coherent quantum states become inextricably correlated, has evolved from one of the most startling and controversial outcomes of quantum mechanics to the enabling principle of emerging technologies such as quantum computation and quantum sensors. The use of entangled particles in measurement permits the transcendence of the standard quantum limit in sensitivity, which scales as N^1/2 for N particles, to the Heisenberg limit, which scales as N. This approach has been applied to optical interferometry using entangled photons and spin pairs for the measurement of magnetic fields and improvements on atomic clocks. Here, we demonstrate experimentally an 9.4-fold increase in sensitivity to an external magnetic field of a 10-spin entangled state, compared with an isolated spin, using nuclear spins in a highly symmetric molecule. This approach scales in a favourable way compared to systems where qubit loss is prevalent, and paves the way for enhanced precision in magnetic field sensing
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا