Do you want to publish a course? Click here

Exploring Active Supermassive Black Holes at 100 Micro-arcsecond Resolution

375   0   0.0 ( 0 )
 Added by Makoto Kishimoto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Super-high spatial resolution observations in the infrared are now enabling major advances in our understanding of supermassive black hole systems at the centers of galaxies. Infrared interferometry, reaching resolutions of milliarcseconds to sub-milliarcseconds, is drastically changing our view of the central structure from a static to a very dynamic one by spatially resolving to the pc-scale. We are also starting to measure the dynamical structure of fast moving gas clouds around active supermassive black holes at a scale of less than a light year. With further improvements on resolution and sensitivity, we will be able to directly image the exact site of the black holes feedback to its host galaxy, and quantify the effect of such interaction processes. Near-future high angular resolution studies will definitely advance our mass determinations for these black holes, and we might even witness the existence of binary black hole systems at the center of galaxies.



rate research

Read More

113 - Gerold Busch 2016
In the last decades several correlations between the mass of the central supermassive black hole (BH) and properties of the host galaxy - such as bulge luminosity and mass, central stellar velocity dispersion, Sersic index, spiral pitch angle etc. - have been found and point at a coevolution scenario of BH and host galaxy. In this article, I review some of these relations for inactive galaxies and discuss the findings for galaxies that host an active galactic nucleus/quasar. I present the results of our group that finds that active galaxies at $zlesssim 0.1$ do not follow the BH mass - bulge luminosity relation. Furthermore, I show near-infrared integral-field spectroscopic data that suggest that young stellar populations cause the bulge overluminosity and indicate that the host galaxy growth started first. Finally, I discuss implications for the BH-host coevolution.
MeV blazars are the most luminous persistent sources in the Universe and emit most of their energy in the MeV band. These objects display very large jet powers and accretion luminosities and are known to host black holes with a mass often exceeding $10^9 M_{odot}$. An MeV survey, performed by a new generation MeV telescope which will bridge the entire energy and sensitivity gap between the current generation of hard X-ray and gamma-ray instruments, will detect $>$1000 MeV blazars up to a redshift of $z=5-6$. Here we show that this would allow us: 1) to probe the formation and growth mechanisms of supermassive black holes at high redshifts, 2) to pinpoint the location of the emission region in powerful blazars, 3) to determine how accretion and black hole spin interplay to power the jet.
By examining the locations of central black holes in two elliptical galaxies, M,32 and M,87, we derive constraints on the violation of the strong equivalence principle for purely gravitational objects, i.e. black holes, of less than about two-thirds, $eta_N<0.68$ from the gravitational interaction of M,87 with its neighbours in the Virgo cluster. Although M,32 appears to be a good candidate for this technique, the high concentration of stars near its centre substantially weakens the constraints. On the other hand, if a central black hole is found in NGC 205 or one of the other satellite ellipticals of M,31, substantially better constraints could be obtained. In all cases the constraints could improve dramatically with better astrometry.
97 - Jian-Min Wang , Edi Bon 2020
Changing-look active galactic nuclei (CL-AGNs) as a new subpopulation challenge some fundamental physics of AGNs because the timescales of the phenomenon can hardly be reconciled with accretion disk models. In this Letter{textit{}}, we demonstrate the extreme case: close binaries of supermassive black holes (CB-SMBHs) with high eccentricities are able to trigger the CL transition through one orbit. In this scenario, binary black holes build up their own mini-disks by peeling gas off the inner edges of the circumbinary disk during the apastron phase, after which they tidally interact with the disks during the periastron phase to efficiently exchange angular momentum within one orbital period. For mini-disks rotating retrograde to the orbit, the tidal torque rapidly squeezes the tidal parts of the mini-disks into a much smaller radius, which rapidly results in higher accretion and short flares before the disks decline into type-2 AGNs. Prograde-rotation mini-disks gain angular momentum from the binary and rotate outward, which causes a rapid turn-off from type-1 to type-2. Turn-on occurs around the apastron phase. CB-SMBHs control cycle transitions between type-1 and type-2 with orbital periods but allow diverse properties in CL-AGN light curves.
Collapsing supermassive stars ($M gtrsim 3 times 10^4 M_{odot}$) at high redshifts can naturally provide seeds and explain the origin of the supermassive black holes observed in the centers of nearly all galaxies. During the collapse of supermassive stars, a burst of non-thermal neutrinos is generated with a luminosity that could greatly exceed that of a conventional core collapse supernova explosion. In this work, we investigate the extent to which the neutrinos produced in these explosions can be observed via coherent elastic neutrino-nucleus scattering (CE$ u$NS). Large scale direct dark matter detection experiments provide particularly favorable targets. We find that upcoming $mathcal{O}(100)$ tonne-scale experiments will be sensitive to the collapse of individual supermassive stars at distances as large as $mathcal{O}(10)$ Mpc. While the diffuse background from the cosmic history of these explosions is unlikely to be detectable, it could serve as an additional background hindering the search for dark matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا