No Arabic abstract
Changing-look active galactic nuclei (CL-AGNs) as a new subpopulation challenge some fundamental physics of AGNs because the timescales of the phenomenon can hardly be reconciled with accretion disk models. In this Letter{textit{}}, we demonstrate the extreme case: close binaries of supermassive black holes (CB-SMBHs) with high eccentricities are able to trigger the CL transition through one orbit. In this scenario, binary black holes build up their own mini-disks by peeling gas off the inner edges of the circumbinary disk during the apastron phase, after which they tidally interact with the disks during the periastron phase to efficiently exchange angular momentum within one orbital period. For mini-disks rotating retrograde to the orbit, the tidal torque rapidly squeezes the tidal parts of the mini-disks into a much smaller radius, which rapidly results in higher accretion and short flares before the disks decline into type-2 AGNs. Prograde-rotation mini-disks gain angular momentum from the binary and rotate outward, which causes a rapid turn-off from type-1 to type-2. Turn-on occurs around the apastron phase. CB-SMBHs control cycle transitions between type-1 and type-2 with orbital periods but allow diverse properties in CL-AGN light curves.
Close binaries of supermassive black holes (CB-SMBHs) with separations of $lesssim 0.1$pc as the final stage of galaxy mergers are sources of low frequency gravitational waves (GW), however, they are still elusive observationally because they are not spatially resolved. Fortunately, reverberation as echoes of broad emission lines to ionizing continuum conveys invaluable information of the dynamics of broad-line regions (BLRs) governed by supermassive black holes in the central regions of active galactic nuclei (AGNs). In this paper, we demonstrate how to composite the hybrid 2-dimensional transfer functions of binary BLRs around the CB-SMBHs in AGNs, providing an opportunity of identifying them from reverberation mapping (RM) data. It is found that there are variation-coupling effects in the transfer functions, arising from the coupling of CB-SMBH light curves in the Fourier space. We provide semi-analytical formulations of the transfer functions for kinematic maps of the gas. For cases with the simplest variation-coupling effects, we make calculations for several BLR models and reveal significant distinctions from those of single active black holes. In principle, the difference is caused by the orbital motion of the CB-SMBH systems. In order to search for CB-SMBHs in time-domain space, selection of target candidates should focus on local AGNs with H$beta$ double-peaked profiles and weaker near-infrared emission. High-fidelity RM-campaigns of monitoring the targets in future will provide opportunities to reveal these kinematic signatures of the CB-SMBHs and hence for measurements of their orbital parameters.
Changing-look phenomenon observed now in a growing number of active galaxies challenges our understanding of the accretion process close to a black hole. We propose a simple explanation for periodic outbursts in sources operating at a few per cent of the Eddington limit. The mechanism is based on two relatively well understood phenomena: radiation pressure instability and formation of the inner optically thin Advection-Dominated Accretion Flow. The limit cycle behaviour takes place in a relatively narrow transition zone between the standard disk and optically thin flow. Large changes in the cold disk are due to the irradiation by the hot flow with accretion rate strongly varying during the cycle. The model gives quantitative predictions and works well for multiple outbursts of NGC 1566.
The spin angular momentum S of a supermassive black hole (SBH) precesses due to torques from orbiting stars, and the stellar orbits precess due to dragging of inertial frames by the spinning hole. We solve the coupled post-Newtonian equations describing the joint evolution of S and the stellar angular momenta Lj, j = 1...N in spherical, rotating nuclear star clusters. In the absence of gravitational interactions between the stars, two evolutionary modes are found: (1) nearly uniform precession of S about the total angular momentum vector of the system; (2) damped precession, leading, in less than one precessional period, to alignment of S with the angular momentum of the rotating cluster. Beyond a certain distance from the SBH, the time scale for angular momentum changes due to gravitational encounters between the stars is shorter than spin-orbit precession times. We present a model, based on the Ornstein-Uhlenbeck equation, for the stochastic evolution of star clusters due to gravitational encounters and use it to evaluate the evolution of S in nuclei where changes in the Lj are due to frame dragging close to the SBH and to encounters farther out. Long-term evolution in this case is well described as uniform precession of the SBH about the clusters rotational axis, with an increasingly important stochastic contribution when SBH masses are small. Spin precessional periods are predicted to be strongly dependent on nuclear properties, but typical values are 10-100 Myr for low-mass SBHs in dense nuclei, 100 Myr - 10 Gyr for intermediate mass SBHs, and > 10 Gyr for the most massive SBHs. We compare the evolution of SBH spins in stellar nuclei to the case of torquing by an inclined, gaseous accretion disk.
We summarize a study where we test the hypothesis that local black holes (BH) are relics of AGN activity. We compare the mass function of BHs in the local universe with that expected from AGN relics, which are BHs grown entirely with mass accretion during AGN phases. The local BH mass function (BHMF) is estimated by applying the well-known correlations between BH mass, bulge luminosity and stellar velocity dispersion to galaxy luminosity and velocity functions. The density of BHs in the local universe is 4.6 (-1.4;+1.9) 10^5 Msun Mpc-3. The relic BHMF is derived from the continuity equation with the only assumption that AGN activity is due to accretion onto massive BHs and that merging is not important. We find that the relic BHMF at z=0 is generated mainly at z<3. Moreover, the BH growth is anti-hierarchical in the sense that smaller BHs (MBH<10^7 Msun) grow at lower redshifts (z<1) with respect to more massive ones (z~1-3). Unlike previous work, we find that the BHMF of AGN relics is perfectly consistent with the local BHMF indicating the local BHs were mainly grown during AGN activity. This agreement is obtained while satisfying, at the same time, the constraints imposed by the X-ray background. The comparison with the local BHMF also suggests that the merging process is not important in shaping the relic BHMF, at least at low redshifts (z<3). Our analysis thus suggests the following scenario: local BHs grew during AGN phases in which accreting matter was converted into radiation with efficiencies eff=0.04-0.16 and emitted at a fraction lambda=0.1-1.7 of the Eddington luminosity. The average total lifetime of these active phases ranges from ~4.5 10^8 yr for MBH<10^7 Msun to ~1.5 10^8 yr for MBH>10^9 Msun.
We compiled a sample of 73 active galactic nuclei (AGNs) with reverberation mapping (RM) observations from RM campaigns including our ongoing campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs). This sample covers a large range of black hole (BH) mass $(M_{bullet}=10^{6-9}~M_odot)$, dimensionless accretion rates $(dot{mathscr{M}}=10^{-2.7}-10^{2.7})$ and 5100~AA~luminosity $(L_{5100}=10^{42-46}~rm erg~s^{-1})$, allowing us to systematically study the AGN variability and their relations with BH mass, accretion rates, and optical luminosity. We employed the damped random walk (DRW) model to delineate the optical variability of continuum at 5100~AA~and obtained damped variability timescale ($tau_{rm d}$) and amplitude ($sigma_{rm d}$) using a Markov Chain Monte Carlo (MCMC) method. We also estimated the traditional variability amplitudes ($F_{rm var}$), which provide a model-independent measure and therefore are used to test the DRW results. We found that AGN variability characteristics are generally correlated with $(M_{bullet},dot{mathscr{M}},L_{5100})$. These correlations are smooth from sub-Eddington to super-Eddington accretion AGNs, probably implying that the AGN variability may be caused by the same physical mechanism.