Do you want to publish a course? Click here

Eotvos Experiments with Supermassive Black Holes

198   0   0.0 ( 0 )
 Added by Jeremy S. Heyl
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

By examining the locations of central black holes in two elliptical galaxies, M,32 and M,87, we derive constraints on the violation of the strong equivalence principle for purely gravitational objects, i.e. black holes, of less than about two-thirds, $eta_N<0.68$ from the gravitational interaction of M,87 with its neighbours in the Virgo cluster. Although M,32 appears to be a good candidate for this technique, the high concentration of stars near its centre substantially weakens the constraints. On the other hand, if a central black hole is found in NGC 205 or one of the other satellite ellipticals of M,31, substantially better constraints could be obtained. In all cases the constraints could improve dramatically with better astrometry.



rate research

Read More

A perfect irrotational fluid with the equation of state of dust, Irrotational Dark Matter (IDM), is incapable of virializing and instead forms a cosmoskeleton of filaments with supermassive black holes at the joints. This stark difference from the standard cold dark matter (CDM) scenario arises because IDM must exhibit potential flow at all times, preventing shell-crossing from occurring. This scenario is applicable to general non-oscillating scalar-field theories with a small sound speed. Our model of combined IDM and CDM components thereby provides a solution to the problem of forming the observed billion-solar-mass black holes at redshifts of six and higher. In particular, as a result of the reduced vortical flow, the growth of the black holes is expected to be more rapid at later times as compared to the standard scenario.
Scalar-tensor theories of gravity generally violate the strong equivalence principle, namely compact objects have a suppressed coupling to the scalar force, causing them to fall slower. A black hole is the extreme example where such a coupling vanishes, i.e. black hole has no scalar hair. Following earlier work, we explore observational scenarios for detecting strong equivalence principle violation, focusing on galileon gravity as an example. For galaxies in-falling towards galaxy clusters, the supermassive black hole can be offset from the galaxy center away from the direction of the cluster. Hence, well resolved images of galaxies around nearby clusters can be used to identify the displaced black hole via the star cluster bound to it. We show that this signal is accessible with imaging surveys, both ongoing ones such as the Dark Energy Survey, and future ground and space based surveys. Already, the observation of the central black hole in M~87 places new constraints on the galileon parameters, which we present here. $mathcal{O}(1)$ matter couplings are disfavored for a large region of the parameter space. We also find a novel phenomenon whereby the black hole can escape the galaxy completely in less than one billion years.
We present the first fully relativistic prediction of the electromagnetic emission from the surrounding gas of a supermassive binary black hole system approaching merger. Using a ray-tracing code to post-process data from a general relativistic 3-d MHD simulation, we generate images and spectra, and analyze the viewing angle dependence of the light emitted. When the accretion rate is relatively high, the circumbinary disk, accretion streams, and mini-disks combine to emit light in the UV/EUV bands. We posit a thermal Compton hard X-ray spectrum for coronal emission; at high accretion rates, it is almost entirely produced in the mini-disks, but at lower accretion rates it is the primary radiation mechanism in the mini-disks and accretion streams as well. Due to relativistic beaming and gravitational lensing, the angular distribution of the power radiated is strongly anisotropic, especially near the equatorial plane.
108 - Manuel Arca Sedda 2020
In this paper, we explore the mechanisms that regulate the formation and evolution of stellar black hole binaries (BHBs) around supermassive black holes (SMBHs). We show that dynamical interactions can efficiently drive in-situ BHB formation if the SMBH is surrounded by a massive nuclear cluster (NC), while orbitally segregated star clusters can replenish the BHB reservoir in SMBH-dominated nuclei. We discuss how the combined action of stellar hardening and mass segregation sculpts the BHB orbital properties. We use direct N-body simulations including post-Newtonian corrections up to 2.5 order to study the BHB-SMBH interplay, showing that the Kozai-Lidov mechanism plays a crucial role in shortening binaries lifetime. We find that the merging probability weakly depends on the SMBH mass in the $10^6-10^9{rm ~M}_odot$ mass range, leading to a merger rate $Gamma simeq 3-8$ yr$^{-1}$ Gpc$^{-3}$ at redshift zero. Nearly $40%$ of the mergers have masses in the BH mass gap, $50-140{rm ~M}_odot$, thus indicating that galactic nuclei are ideal places to form BHs in this mass range. We argue that gravitational wave (GW) sources with components mass $m_1>40{rm ~M}_odot$ and $m_2<30{rm ~M}_odot$ would represent a strong indicator of a galactic nuclei origin. The majority of these mergers could be multiband GW sources in the local Universe: nearly $40%$ might be seen by LISA as eccentric sources and, a few years later, as circular sources by LIGO and the Einstein Telescope, making decihertz observatories like DECIGO unique instruments to bridge the observations during the binary inspiral.
It has recently been proposed that massive primordial black holes (PBH) could constitute all of the dark matter, providing a novel scenario of structure formation, with early reionization and a rapid growth of the massive black holes at the center of galaxies and dark matter halos. The scenario arises from broad peaks in the primordial power spectrum that give both a spatially clustered and an extended mass distribution of PBH. The constraints from the observed microlensing events on the extended mass function have already been addressed. Here we study the impact of spatial clustering on the microlensing constraints. We find that the bounds can be relaxed significantly for relatively broad mass distributions if the number of primordial black holes within each cluster is typically above one hundred. On the other hand, even if they arise from individual black holes within the cluster, the bounds from CMB anisotropies are less stringent due to the enhanced black hole velocity in such dense clusters. This way, the window between a few and ten solar masses has opened up for PBH to comprise the totality of the dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا