Do you want to publish a course? Click here

Correlations between Supermassive Black Holes and their Hosts in Active Galaxies

114   0   0.0 ( 0 )
 Added by Gerold Busch
 Publication date 2016
  fields Physics
and research's language is English
 Authors Gerold Busch




Ask ChatGPT about the research

In the last decades several correlations between the mass of the central supermassive black hole (BH) and properties of the host galaxy - such as bulge luminosity and mass, central stellar velocity dispersion, Sersic index, spiral pitch angle etc. - have been found and point at a coevolution scenario of BH and host galaxy. In this article, I review some of these relations for inactive galaxies and discuss the findings for galaxies that host an active galactic nucleus/quasar. I present the results of our group that finds that active galaxies at $zlesssim 0.1$ do not follow the BH mass - bulge luminosity relation. Furthermore, I show near-infrared integral-field spectroscopic data that suggest that young stellar populations cause the bulge overluminosity and indicate that the host galaxy growth started first. Finally, I discuss implications for the BH-host coevolution.



rate research

Read More

One of the main challenges in using high redshift active galactic nuclei to study the correlations between the mass of the supermassive Black Hole (MBH) and the properties of their active host galaxies is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed active galactic nuclei (AGN) with deep Hubble Space Telescope imaging, using the lens modelling code Lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. MBH are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGN, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGN is small and thus they provide mostly a consistency check on systematic errors related to resolution for the non-lensed AGN. However, the number of known lensed AGN is expected to increase dramatically in the next few years, through dedicated searches in ground and space based wide field surveys, and they may become a key diagnostic of black hole and galaxy co-evolution.
We present a study of relations between the masses of the central supermassive black holes (SMBHs) and the atmospheric gas temperatures and luminosities measured within a range of radii between $R_{rm e}$ and 5$R_{rm e}$, for a sample of 47 early-type galaxies observed by the {it Chandra X-ray Observatory}. We report the discovery of a tight correlation between the atmospheric temperatures of the brightest cluster/group galaxies (BCGs) and their central SMBH masses. Furthermore, our hydrostatic analysis reveals an approximately linear correlation between the total masses of BCGs ($M_{rm tot}$) and their central SMBH masses ($M_{rm BH}$). State-of-the-art cosmological simulations show that the SMBH mass could be determined by the binding energy of the halo through radiative feedback during the rapid black hole growth by accretion, while for the most massive galaxies mergers are the chief channel of growth. In the scenario of a simultaneous growth of central SMBHs and their host galaxies through mergers, the observed linear correlation could be a natural consequence of the central limit theorem.
This work aims at studying the $M_{BH}-M_{dyn}$ relation of a sample of $2<z<7$ quasars by constraining their host galaxy masses through full kinematical modeling of the cold gas kinematics, thus avoiding all possible biases and effects introduced by the rough virial estimates usually adopted so far. For this purpose we retrieved public observations of $72$ quasar host galaxies observed in ${rm [CII]_{158mu m}}$ or ${rm CO}$ transitions with the Atacama Large Millimeter Array (ALMA). We then selected those quasars whose line emission is spatially resolved and performed a kinematic analysis on ALMA observations. We estimated the dynamical mass of the systems by modeling the gas kinematics with a rotating disc taking into account geometrical and instrumental effects. Our dynamical mass estimates, combined with $M_{BH}$ obtained from literature and our own new ${rm CIV}lambda1550$ observations, have allowed us to investigate the $ M_{BH}/M_{dyn}$ in the early Universe. Overall we obtained a sample of $10$ quasars at $zsim2-7$ in which line emission is detected with high S/N ($> 5-10$) and the gas kinematics is spatially resolved and dominated by ordered rotation. The estimated dynamical masses place $6$ out of $10$ quasars above the local relation yielding to a $M_{BH}/M_{dyn}$ ratios $sim10times$ higher than those estimated in low-$z$ galaxies. On the other hand, we found that $4$ quasars at $zsim 4-6$ have dynamical-to-BH mass ratios consistent with what is observed in early-type galaxies in the local Universe.
Correlations between the mass of a supermassive black hole and the properties of its host galaxy (e.g., total stellar mass (M*), luminosity (Lhost)) suggest an evolutionary connection. A powerful test of a co-evolution scenario is to measure the relations MBH-Lhost and MBH-M* at high redshift and compare with local estimates. For this purpose, we acquired HST imaging with WFC3 of 32 X-ray-selected broad-line AGN at 1.2<z<1.7 in deep survey fields. By applying state-of-the-art tools to decompose the HST images including available ACS data, we measured the host galaxy luminosity and stellar mass along with other properties through the 2D model fitting. The black hole mass was determined using the broad Halpha line, detected in the near-infrared with Subaru/FMOS, which potentially minimizes systematic effects using other indicators. We find that the observed ratio of MBH to total M* is 2.7 times larger at z~1.5 than in the local universe, while the scatter is equivalent between the two epochs. A non-evolving mass ratio is consistent with the data at the 2-3 sigma confidence level when accounting for selection effects and their uncertainties. The relationship between MBH-Lhost paints a similar picture. Therefore, our results cannot distinguish whether SMBHs and their total M* and Lhost proceed in lockstep or whether the growth of the former somewhat overshoots the latter, given the uncertainties. Based on a statistical estimate of the bulge-to-total mass fraction, the ratio MBH/M* is offset from the local value by a factor of ~7 which is significant even accounting for selection effects. Taken together, these observations are consistent with a scenario in which stellar mass is subsequently transferred from an angular momentum supported component of the galaxy to the pressure supported one through secular processes or minor mergers at a faster rate than mass accretion onto the SMBH.
We study black hole - host galaxy correlations, and the relation between the over-massiveness (the distance from the average $M_{BH}-sigma$ relation) of super-massive black holes (SMBHs) and star formation histories of their host galaxies in the Illustris and TNG100 simulations. We find that both simulations are able to produce black hole scaling relations in general agreement with observations at $z=0$, but with noticeable discrepancies. Both simulations show an offset from the observations for the $M_{BH}-sigma$ relation, and the relation between $M_{BH}$ and the Sersic index. The relation between $M_{BH}$ and stellar mass $M_*$ is tighter than the observations, especially for TNG100. For massive galaxies in both simulations, the hosts of over-massive SMBHs (those above the mean $M_{BH}-sigma$ relation) tend to have larger Sersic indices and lower baryon conversion efficiency, suggesting a multidimensional link between SMBHs and properties of their hosts. In Illustris, the hosts of over-massive SMBHs have formed earlier and have lower present-day star formation rates, in qualitative agreement with the observations for massive galaxies with $sigma>100 rm km/s$. For low-mass galaxies, such a correlation still holds in Illustris but does not exist in the observed data. For TNG100, the correlation between SMBH over-massiveness and star formation history is much weaker. The hosts of over-massive SMBHs generally have consistently larger star formation rates throughout history. These galaxies have higher stellar mass as well, due to the strong $M_{BH}-M_*$ correlation. Our findings show that simulated SMBH scaling relations and correlations are sensitive to features in the modeling of SMBHs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا