Do you want to publish a course? Click here

Topology of Triple-Point Metals

68   0   0.0 ( 0 )
 Added by Sobhit Singh
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss and illustrate the appearance of topological fermions and bosons in triple-point metals, where a band crossing of three electronic bands occurs close to the Fermi level. Topological bosons appear in the phonon spectrum of certain triple-point metals, depending on the mass of atoms that form the binary triple-point metal. We first provide a classification of possible triple-point electronic topological phases possible in crystalline compounds and discuss the consequences of these topological phases, seen in Fermi arcs, topological Lifshitz transitions and transport anomalies. Then we show how the topological phase of phonon modes can be extracted and proven for relevant compounds. Finally, we show how the interplay of electronic and phononic topologies in triple-point metals puts these textit{metallic} materials into the list of the most efficient textit{metallic} thermoelectrics known to date.

rate research

Read More

82 - W. X. Zhou , A. Ariando 2020
The possibility of reconciliation between seemingly mutually exclusive properties in one system can not only lead to theoretical breakthroughs but also potential novel applications. The research on the coexistence of two purportedly contra-indicated properties, ferroelectricity/polarity and conductivity, proposed by Anderson and Blount over 50 years ago was recently revitalized by the discovery of the first unambiguous polar metal LiOsO3 and further fueled by the demonstration of the first switchable ferroelectric metal WTe2. In this review, we first discuss the reasons why the coexistence of ferroelectricity/polarity and conductivity have been deemed incompatible, followed by a review on the history of ferroelectric/polar metals. Secondly, we review the important milestones along with the corresponding mechanisms for the ferroelectric/polar metallic phases in these materials. Thirdly, we summarize the design approaches for ferroelectric/polar metals. Finally, we discuss the future prospects and potential applications of ferroelectric/polar metals.
The transition metal dipnictides TaAs2 , TaSb2 , NbAs2 and NbSb2 have recently sparked interest for exhibiting giant magnetoresistance. While the exact nature of magnetoresistance in these materials is still under active investigation, there are experimental results indicating anisotropic negative magnetoresistance. We study the effect of magnetic field on the band structure topology of these materials by applying a Zeeman splitting. In the absence of magnetic field, we find that the materials are weak topological insulators, which is in agreement with previous studies. When the magnetic field is applied, we find that type-II Weyl points form. This result is found first from a symmetry argument, and then numerically for a k.p model of TaAs2 and a tight-binding model of NbSb2. This effect can be of help in search for an explanation of the anomalous magnetoresistance in these materials.
The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principle calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunneling spectroscopy, we probe the unique signatures of the rotational symmetry of the one-dimensional states located at step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator.
275 - Yuee Xie , Jin Cai , Jinwoong Kim 2018
Exotic links and chains attract interests across various disciplines including mathematics, biology, chemistry and physics. Here, we propose that topological Hopf-chain networks, consisting of one-, two- and three-dimensional (3D) Hopf chains, can be found in the momentum space. These networks can be evolved from a 3D triple-points phase by varying symmetries of a four-band model. Moreover, we identify that the Hopf-chain networks exist in a family of crystals Sc3XC (X = Al, Ga, In, Tl). The crystals are 3D triple-points metals, and transit to topological metals with Hopf-chain networks under strains. These novel Hopf networks exhibit unique Landau levels and magneto-transport properties.
While electrons moving perpendicular to a magnetic field are confined to cyclotron orbits, they can move freely parallel to the field. This simple fact leads to complex current flow in clean, low carrier density semi-metals, such as long-ranged current jets forming along the magnetic field when currents pass through point-like constrictions. Occurring accidentally at imperfect current injection contacts, the phenomenon of current jetting plagues the research of longitudinal magneto-resistance which is particularly important in topological conductors. Here we demonstrate the controlled generation of tightly focused electron beams in a new class of micro-devices machined from crystals of the Dirac semi-metal Cd3As2. The current beams can be guided by tilting a magnetic field and their range tuned by the field strength. Finite element simulations quantitatively capture the voltage induced at faraway contacts when the beams are steered towards them, supporting the picture of controlled electron jets. These experiments demonstrate the first direct control over the highly nonlocal signal propagation unique to 3D semi-metals in the current jetting regime, and may lead to novel applications akin to electron optics in free space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا